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Inferring Asset Return Moments from Investor Holdings

* —1
wi = (%%) (k—1-7y)
There is a long tradition in finance of using holdings to infer asset information.

Markowitz (1952) showed, given g and X, how to find w

In the 1960s, Sharpe, Lintner, and Black argued that, if investors are, on
average, smart, and hold MVE portfolios then:

*
W, X Wy,

That is, we don’t need to calculate g or 3, we can hold the market.

Similarly, if we know 32, and want to calculate p, we can:

=11 +vpXwy, (or Elra] =7 + Ba (E[rm] —7y))
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Using Disaggregated Holding Data

o We are now in a world where we think the market is perhaps not so smart!
o See, e.g., Daniel, Klos, and Rottke (2025)
o What can we do in this world?
e One response is to use various data sources to estimate u, use BARRA or
Axioma to get X, and build a portfolio with positive alpha.
e Starting with Koijen and Yogo (2019), these authors have started exploring
how we might use holdings information in this post-EMH world.
e This paper explores the use of AI/LLM techniques to extract meaning from
asset holdings by different funds/investors.
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Embeddings Language Embeddings
Asset Embeddings

Embeddings

e The term “embedding” were coined in Bengio et al. (2003).

e The idea was to develop a low-dimensional representation of words or “tokens”.
e The roots go back to the work of the linguist John Rupert Firth in the 1950s,
who argued that “...a word is characterized by the company it keeps”

o In the 1980s, Latent Semantic Analysis used Singular Value Decomposition to
reduce word-count tables into sparse low dimensional numerical
representations (like recommender system here).

o In 2013 Word2Vec introduced modern embeddings, based on a 1-hidden-layer
neural network.

e A team at Google trained a 300 neuron network, based on the 100B tokens in a
Google News dataset, generating the embeddings for 3 million tokens.

e Modern implementations use a transformer architecture (Vaswani et al., 2017)
to generate contextual embeddings.

o A (river) “bank” will have a different embedding than a (financial) “bank”.
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Embeddings Language Embeddings
Asset Embeddings

How Embeddings Learn “Meaning”

@ The network learns that ice cream and gelato are similar by processing billions
of sentences.

e In training, it figures out that both words frequently appear near context words
like sweet, dessert, frozen, and scoop.

o Because they “keep the same company,” their mathematical representations
are pulled together in the 300-dimensional vector space.

o As a result, the cosine similarity of their embeddings is close to 1.
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Embeddings Language Embeddings
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Language embedding examples (Word2Vec)

© 00O U W -

> import gensim; import gensim.downloader as api

> wv = api.load(’word2vec-google-news-300’)

> wv[’ice_cream’]

[0.125977 0.029785 0.008606 0.013964 .... -0.279297 -0.085937 0.091308 0.251953]
> wv.similarity(’ice_cream’,’gelato’)

0.6252224

> wv.most_similar(positive=[’ice_cream’,’Italy’],negative=[’US’])
[(*gelato’, 0.579361), ... (’zeppole’, 0.492295), ... (’cannoli’, 0.485007)]

> wv.most_similar (positive=[’grilled_cheese’,’France’],negative=[’US’])
[(’jambon’, 0.529636), (’croque monsieur’, 0.513646)]

> wv.most_similar(positive=[’king’,’woman’],negative=[’man’])

[(’queen’, 0.711819), (’monarch’, 0.618967)]
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Embeddings

o In the 1980s, Latent Semantic Analysis used Singular Value Decomposition to
reduce word-count tables into sparse low dimensional numerical
representations.

o In 2013 Word2Vec introduced modern embeddings, based on a 1-hidden-layer
neural network.

e A team at Google trained a 300 neuron network, based on the 100B tokens in a
Google News dataset, generating the embeddings for 3 million tokens.

e Modern implementations use a transformer architecture (Vaswani et al., 2017)
to generate contextual embeddings.

o A (river) “bank” will have a different embedding than a (financial) “bank”.
o Current Transformers (ChatGPT, Claude, Gemini, ...) are trained on “tens of

trillions” of tokens, and use flexible embedding vectors with dimensions of up to
12,288 (= 212 x 3).
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The Transformer Architecture
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From Vaswani et.al.(2017). See also https://www.youtube.com/watch?v=sznZ78HquPc
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Asset Embeddings

o In this paper, asset and investor embeddings are calculated which are based
on:
e which assets are similar, based on the ordering of assets in funds (PS-BERT)
o which funds/owners are similar, based on the ownership shares (OS-BERT)
o Currently, PS-BERT and OS-BERT are just trained separately, on the
cross-section.

e The appendix proposes an integrated model of asset- and investor-embeddings.
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Model: Embedding Based Asset Pricing Model

o Argues that embeddings contain all relevant info about firms
@ Model premise is that:

@ log dollar holding of an asset as the dot product of the investor embedding and
the asset embedding.

@ asset embeddings are latent characteristics that capture differences in expected
profitability or risk exposure across assets.

@ investor embeddings capture heterogeneity in preferences for the asset
embeddings across investors.
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RV, RC, & ASMP

Empirical Results Test Power
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e Chars here are 3, asset growth, profitability, and Div/AT.

o Valuation ratios are calculated as pq; = Vebar + ¢ + paLt, where RV is the oos
R? from a ridge-regression of p; on betas, chars, or embeddings.

e Funds can and do select stocks based on P/B,

e Can embeddings forecast future AP/Bs?
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Empirical Results Test Power

Covariances
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e Chars are 3, log(M E), log(B/M), asset growth, profitability, and momentum.
e Can the embeddings beat risk models/historical covariance structure?
o BARRA, Axioma, or Daniel, Mota, Rottke, and Santos (2020).
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RV, RC, & ASMP

Empirical Results Test Power

Masked Portfolio Holdings
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@ Measures ability to predict masked assets in MFs, ETFs, HFs?
e Chars: 3, log(MFE), log(B/M), asset growth, profitability, and momentum.
e Can the embeddings can forecast future weight changes/returns?

e Do embeddings forecast the future?
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RV, RC, & ASMP
Empirical Results Test Power

Conclusions

@ These embedding techniques explored here can potentially really help to
extract useful information about the cross-section of risk and expected
returns, and other attributes (e.g., liquidity)

e Relation to quant overlay strategies in firms like Point72, etc.

o This paper has made big strides in developing these techniques.
e Could more data be fed into these systems?

e Prospectuses (Abis, 2020) (Sec 8.3), 10-Ks (Cohen, Malloy, and Nguyen, 2020),
earnings calls, news stories (Sec. 9.5)
o N-PORT data (incl. derivatives and short positions)

@ The paper’s stance that holdings subsume all other information seems
misguided.
e Section 9 discusses approaches to expanding data, which is great.

o It would be good to challenge the models more powerful tests.
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