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Abstract

A number of papers have solved for the optimal dynamic portfolio strategy when expected

returns are time-varying and trading is costly, but only for agents with myopic utility. Non-

myopic agents benefit from hedging against shocks to the investment opportunity set even when

transaction costs are zero (Merton, 1969, 1971). In this paper, we propose a solution to the

dynamic portfolio allocation problem for non-myopic agents faced with a stochastic investment

opportunity set, when trading is costly. We show that the agent’s optimal policy is to trade

toward an “aim” portfolio, the makeup of which depends both on transaction costs and on each

asset’s correlation with changes in the investment opportunity set. The speed at which the

agent should trade towards the aim portfolio depends both on the shock’s persistence and on

the extent to which the shock can be effectively hedged.
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1 Introduction

Mean-variance efficient portfolio optimization, introduced by Markowitz (1952), is both a staple of

MBA curricula and a critical tool for most quantitative asset managers. When either the vector

of expected returns or the covariance matrix of returns is time-varying, a default solution is to

simply hold the conditional mean-variance efficient ‘Markowitz’ (CMVE) portfolio. However, there

are at least two reasons why it is not optimal for long-term investors to hold the CMVE portfolio:

first, as shown in the seminal papers by Merton (1969, 1971) and Cox and Huang (1989) it may be

optimal for long-term investors to deviate from the CMVE portfolio by tilting towards a portfolio

whose realized returns are negatively correlated with changes in the CMVE portfolio’s Sharpe ratio.

Intuitively, holding this portfolio hedges the investor against changes in the investment opportunity

set.

Second, if there are transaction costs then it may be too costly for investors to continuously

and fully rebalance their portfolio in response to these shocks. Early papers (e.g., Constantinides,

1986; Davis and Norman, 1990; Dumas and Luciano, 1991) established that, with proportional

transaction costs and with i.i.d. returns, it is optimal to refrain from trading until positions

deviate substantially from the CMVE portfolio. More recently Litterman (2005) and Gârleanu and

Pedersen (2013, GP) show that when expected returns are time-varying and price impact is linear

(i.e., when transaction costs are quadratic), then it is optimal for investors to trade at a constant

speed towards an aim portfolio, which puts less weight on stocks for which shocks to expected

returns are less persistent.1

The latter set of papers obtain closed-form solutions for the optimal aim portfolio and trading

speed, for arbitrary number of stocks and return forecasting factors, by relying on an ad-hoc

conditionally mean-variance (CMV) objective function that leads to a standard linear-quadratic

optimization problem, whose solution has been widely studied in mathematics and economics.

Specifically, for an investor with wealth process Wt, the CMV objective is to maximize

(?) E

[∫ ∞
0

e−ρt
{
dWt −

γ

2
dW 2

t

}]
,

where γ can be interpreted as an instantaneous variance aversion coefficient. In the absence of

transaction costs, this reduces to the myopic (instantaneous) mean-variance objective. Because it

is very tractable in the presence of transaction costs or portfolio constraints, CMV has been widely

used in the literature.2

In this paper, we propose an objective function which is equal to the certainty equivalent

wealth of an agent with generalized recursive utility and with source-dependent constant absolute

risk-aversion. Specifically, as in Skiadas (2008) and Hugonnier, Pelgrin, and St-Amour (2012), in

1Collin-Dufresne, Daniel, and Sağlam (2020) extend these results to a model where price impact and volatility are
time-varying, and show how trading-speed and aim portfolio vary with volatility and transaction costs.

2In addition to the papers already cited, the CMV objective function is also used in Duffie and Zhu (2017); Du
and Zhu (2017); Vayanos and Vila (2021); Gourinchas, Ray, and Vayanos (2021); Greenwood and Vayanos (2014);
Malkhozov, Mueller, Vedolin, and Venter (2016); Danielsson, Shin, and Zigrand (2012).
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our model the agent exhibits differential risk aversion to the shocks that drive price changes and

changes in expected returns. We show that this preference specification is equally as tractable as the

CMV framework. Moreover, these preferences converge to CMV preferences in the limit where the

agent approaches risk-neutrality toward the risks driving expected returns and toward horizon risk

for the stationary solution.3 In the finite horizon case, when all risk-aversion coefficients towards all

sources of risk are equal, this preference specification nests standard CARA (negative exponential)

expected utility.

We characterize the closed-form solution to the optimal portfolio choice problem in a setting

where the agent can trade a large number of securities whose expected returns are a linear function

of a vector of mean-reverting state variables and where the agent faces quadratic trading costs. We

show that the agent’s optimal policy is to trade at a given rate towards an aim portfolio, where the

aim portfolio is distinct from the optimal portfolio that the agent would choose in the absence of

transaction costs. Since our framework nests both CARA expected utility and CMV preferences,

we can investigate the impact of hedging demand on the aim portfolio and the trading speed.

We first show that, for a (myopic) agent with CMV preferences, the aim portfolio will be a

trading-speed-discounted average of expected future CMVE portfolios, and the optimal trading

speed matrix will be entirely determined by the ratio of stock volatility to price impact matrices.

Thus, for a CMV-investor, the weight in the aim portfolio on a security with a mean-reverting

expected return will always be lower than the weight in the corresponding CMVE portfolio and

it will be entirely independent of the covariance matrix of signals. Specifically, consistent with

the findings of GP, we show that CMV-investors underweight stocks with higher trading speed

(that is, more volatile and more liquid stocks) and whose expected return decays faster. Further,

CMV-investors aim portfolio and trading speed are identical whether signals are determinstic or

stochastic.

However, when the agent is instead a long-term expected utility investor (ie., when their pref-

erences deviate from CMV), we show that the preference to hedge changes in the investment

opportunity set can dramatically change both the composition of the aim portfolio and speed at

which the agent will trade towards the aim portolio. Both depend crucially on the correlation

coefficient between the realized stock returns and the shocks to expected returns. If the correla-

tion is sufficiently negative, we show that a long term CARA investor will choose to overweight

a stock relative to the no-transaction-cost benchmark, despite it having positive price impact and

mean-reverting return. GP’s insight that, because of transaction costs, agents should underweight

stocks with higher expected return decay rates, only holds conditional on a given level of correlation

between signal and stock return. A long-term investor will optimally load more on a signal which

mean reverts more quickly if that signal is also more negatively correlated with shocks to expected

returns, i.e., if it better hedges changes in the investment opportunity set.4

3Specifically, we show that the infinite horizon objective (?) above corresponds to the certainty equivalent of
a source dependent recursive utility investor with a random horizon drawn from an exponential distribution with
parameter ρ, who is risk-neutral towards expected return shocks and horizon risk.

4Note that in the absence of transaction costs, the optimal portfolio already holds a larger position than the
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Furthermore, we find that the speed at which the agent will optimially trade towards the aim

portolio depends on the correlation between shocks to expected returns and realized stock returns.

In particular, the trading speed is decreasing for signals that are better hedges, i.e., for expected

return shocks whose correlation with stock returns is more negative. As the correlation between

realized returns and shocks to expected returns decreases, long-horizon stock return volatility de-

creases. Intuitively, the more negative this correlation, the better the ability of an asset to hedge

future changes in expected return, and hence the lower the longer-horizon volatility. However, the

presence of transaction costs increases the long-term investor’s cost of hedging, and hence decreases

the optimal trading speed. Finally, since the aim portfolio is a trading cost discounted value of

future expected no-transaction-cost portfolios, negative correlation also implies a smaller discount

between the no-transaction-cost optimum and the aim portfolio.

Related literature. Our paper is related to three strands of the dynamic portfolio choice

literature. First, there is a large literature on the theory and the empirical relevance of hedging

demand starting from Merton (1969, 1971). In particular, there are several studies examining how

return predictability affects long-term asset allocation (see, among others, Brennan, Schwartz, and

Lagnado, 1997; Brandt, 1999; Kim and Omberg, 1996; Campbell, 1999; Campbell and Viceira,

2002). In this literature, transaction costs are typically ignored, as the analytical solutions are

typically not available in the presence of transaction costs.

Second, there are several academic papers studying the effect of transaction costs on dynamic

portfolio choice but they typically focus on a very small number of assets (typically two) and limited

use of return predictability (typically none). Constantinides (1986), Davis and Norman (1990),

Dumas and Luciano (1991), Shreve and Soner (1994) study the two-asset (one risky and one risk-

free) case with i.i.d. returns. Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) use a

dynamic programming approach to investigate the impact of fixed and proportional transaction

costs on the utility costs and the optimal rebalancing rule in a setting with a single risky asset with

time-varying expected return. Longstaff (2001) studies a numerical solution in a setting with a

single risky asset where this asset’s returns have stochastic volatility, and when agents face liquidity

constraints that force them to trade absolutely continuously. Liu (2004) studies the multi-asset case

when agents have CARA preferences and when risky-asset returns are i.i.d.. Lynch and Tan (2010)

use a numerical procedure to solve for the optimal portfolio choice of an investor with access to

two risky assets under return predictability and proportional transaction costs. Brown and Smith

(2011) discuss the high-dimensionality of the problem and provide approximately optimal trading

strategies for a general dynamic portfolio optimization problem with transaction costs and return

predictability that can be applied to larger number of stocks.

Third, there is a growing literature utilizing the tractability of the linear-quadratic formula-

tion to derive closed-form solutions for the optimal investment portfolio in the presence of return

predictability and transaction costs. Litterman (2005) and GP introduced this framework. They

CMV portfolio because of the positive hedging demand. The surprising finding is that transaction costs can actually
further increase the overweighting of such stocks relative to the no-transaction-cost benchmark if the correlation is
sufficiently negative.
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demonstrate that it is optimal to trade away from the current portfolio and towards an “aim”

portfolio which is a weighted average of the current and expected-future Markowitz portfolios on

all future dates. Thus, the aim portfolio puts a higher weight on high expected return assets when

that return is more persistent. In the GP setting, the speed at which the investor should move

toward the aim portfolio is constant.

Collin-Dufresne, Daniel, and Sağlam (2020, CDS) consider a similar objective function (CMV

utility with quadratic transaction costs) in a setting where expected returns, covariances and trans-

action costs are all stochastic. They find that the makeup of the aim portfolio and the trading

speed are state-dependent, and vary with the relative magnitudes of transaction costs and state

transition probabilities.5

2 The continuous time model with a finite horizon

Consider a continuous time economy where the N -dimensional vector of stock price processes St

has dynamics:

dSt = (µ0 + µxt)dt+ σsdZ
s
t (1)

dxt = −κxtdt+ σxdZ
x
t + σxsdZ

s
t (2)

We assume that the vector of expected return predictors xt is K-dimensional and that the

risk-free rate is zero.6 Zs and Zx are vectors of independent Brownian motions that drive the

randomness in stock prices and the state variables.7 We define the instantaneous covariance matrix

of returns to be Σ and the instantaneous covariance matrix of the innovations in the vector of

state-variables to be Σx. Then, these covariance matrices are given by:

Σ = σsσ
>
s , (3)

Σx = σxσ
>
x + σxsσ

>
xs. (4)

Remark 1 Note that this specification nests the special case where each stock has an expected

return driven by M stock specific predictors (e.g, book-to-market, momentum, reversal) that have

different decay rates:

dSi(t) = (µ0,i +

M∑
m=1

µm,ixm,i(t))dt+ σidZ
s
i (t) for i = 1, . . . , N

dxj,i(t) = −κjxj,i(t)dt+ νj,idZ
j
i (t) for j = 1, . . . ,M.

5It would be interesting to extend our model to study how hedging demands driven by stochastic shifts in second
moments affect their findings.

6For ease of reference and brevity, we will use ‘returns’ to refer to ‘price changes’ throughout the paper, consistent
with many of the other papers in this literature.

7Since dZst is N × 1, σx is K ×K, σs is N ×N and σxs is K ×N .
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To see this, set x to be the (NM, 1) stacked vector of firm specific predictors and the matrix κ to

be the (NM,NM) diagonal matrix whose diagonal coefficients cycle through the κm.8

The agent trades continuously by rebalancing the vector of number of shares nt at an absolutely

continuous rate θt, that is dnt = θtdt. When they rebalance they incur quadratic transaction costs

so that their wealth process is given by:

dWt = n>t dSt −
1

2
θ>t Λθtdt (5)

= n>t (µ0 + µxt)dt+ n>t σsdZ
s
t −

1

2
θ>t Λθtdt (6)

where Λ is a symmetric positive definite transaction-cost matrix.9

We assume that the agent maximizes her certainty equivalent wealth Ht, which is a process

(Ht, σH,s, σH,x) which solves the following backward stochastic differential equation (BSDE):

Ht = Et

[
WT −

∫ T

t

{
1

2
γ||σH,s||2 +

1

2
γx||σH,x||2

}
du

]
(7)

Inspecting this equation we see that the solution Ht is the expected terminal wealth net of a risk-

penalty, which is linear in the two components of its own variance that are due to the orthogonal Zs

and Zx shocks, respectively. The agent attaches different ‘source-specific’ risk-aversion coefficients,

γ and γx, to the two sources of risk, in the spirit of Skiadas (2008), and Hugonnier, Pelgrin, and

St-Amour (2012). Our first result is to show that this certainty equivalent formulation nests two

well-known objective functions: the constant absolute risk-aversion (CARA) expected utility and

the conditional mean-variance (CMV) preferences.

Theorem 2 The solution Ht to the recursive equation (7) is the certainty equivalent of an agent

with source-dependent stochastic differential utility, who has a CARA coefficient γ towards Zs

shocks and γx towards Zx shocks. It nests two important special cases:

• When γx = γ, it is the certainty equivalent of an agent with negative exponential CARA

expected utility:

Ht = −1

γ
log(Et[e

−γWT ]). (8)

• When γxσx = 0 and σxs = 0, it reduces to the CMV objective function:

Ht = Wt + Et

[∫ T

t

{
dWu −

1

2
γdW 2

u

}]
. (9)

Proof. See Appendix A and Appendix B.

8Other matrices need to be adjusted appropriately as well. For example, µ is the (N,NM) diagonal sparse matrix
which has row vector [µ1,i, µ2,i, . . . , µN,i] on the ith ‘diagonal.’

9Assuming Λ is positive definite insures that transaction costs on any non-zero trade must be strictly positive.
Assuming it is symmetric is without loss of generality given the quadratic form of the transaction costs.
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This theorem shows that the certainty equivalent Ht defined in equation (7) nests both CARA

and CMV preferences. Because of its analytical tractability, the CMV framework has been widely

used in the literature on dynamic portfolio choice with transaction costs (e.g., Litterman, 2005;

Gârleanu and Pedersen, 2013; Collin-Dufresne, Daniel, and Sağlam, 2020), with holding costs (e.g.,

Duffie and Zhu, 2017) and with portfolio constraints (e.g., Vayanos and Vila, 2021). The second

result of the theorem show, that when expected returns are non stochastic (i.e., when σx = σxs = 0),

then the optimal portfolio for CARA and CMV investors is identical. However, when the expected

returns are stochastic, the solutions diverge. In this latter setting, we can demonstrate the following:

Corollary 3 The CMV objective function of equation (9) reduces to the linear-quadratic framework

used in Litterman (2005), Gârleanu and Pedersen (2013), and Collin-Dufresne, Daniel, and Sağlam

(2020):

Jt := Ht −Wt = Et

[∫ T

t

{
n>u (µ0 + µxu)du− 1

2
θ>u Λθu −

1

2
γn>u Σnu

}
du

]
s.t. dnt = θtdt. (10)

Its solution is identical to that of an agent with source dependent utility who maximizes the certainty

equivalent (7), is risk-neutral to state-variable shocks (i.e., γx = 0), uses the correct covariance

matrix for both stock returns (Σ) and state variables (Σx), but assumes zero correlation between

the two, that is σxs = 0.

In the absence of transaction costs, it is optimal for the CMV agent to act myopically and con-

tinuously rebalance towards the conditional mean-variance efficient (CMVE) portfolio. However,

even in the absence of transaction costs, the CARA investor optimally deviates from the CMVE

portfolio in order to hedge shocks to the investment opportunity set (Merton, 1971).

When transaction costs are non-zero, Gârleanu and Pedersen (2013) show that it is optimal for

the CMV-investor to trade at a constant rate towards an aim-portfolio, that can be interpreted

as a discounted average of expected future CMVE portfolios (note that CMVE portfolios vary

stochastically as the expected returns are driven by xt).
10

Our contribution is to consider the optimal dynamic portfolio for an agent with long-horizon

preferences (e.g., a CARA investor) in a setting with a stochastic investment opportunities, and

where transaction costs are non-zero. Specifically, we characterize the optimal trading strategy

of the source-dependent utility agent (which nests both CMV and CARA) in the presence of

transaction costs. We would like to understand whether and how the seminal insight of Merton

(1971)—that a long-term investor should deviate from her myopic portfolio to take advantage

of stock predictability—is affected by the presence of transaction costs. Is it still possible to

characterize the optimal trading strategy of a non-myopic agent in terms of an aim-portfolio and

trading speed, as in GP? How do hedging demands affect the aim portfolio and trading speed?

The following theorem describes the solution to the optimal portfolio choice problem of the

agent with recursive utility with source-dependent risk-aversion.

10See Theorem 5 below for a precise restatement of this result in the context of our model.
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Theorem 4 Suppose an agent maximizes her certainty equivalent Ht defined in equation (7) by

choosing her optimal position vector nt given wealth dynamics described by equation (6).

If there are no transaction costs (Λ = 0), then the maximum certainty equivalent is

Ht = Wt + J(xt, t) where

J(x, t) = c0(t) + c1(t) +
1

2
x>c2(t)x, (11)

where the (matrix) functions c1, c2 solve the system of ODEs:

−.c1 = (µ− γΣsxc2)
> (γΣ)−1µ0 − {(µ− γΣsxc2)

>Σ−1Σsx + c>2 Ω + κ>}c1 (12)

−.c2 = c>2

(
γΣ>sxΣ−1Σsx − Ω

)
c2 + 2c>2 (−κ− Σ>sxΣ−1µ) + µ>(γΣ)−1µ (13)

where

Ω = γσxsσ
>
xs + γxσxσ

>
x , (14)

Σsx = σsσ
>
xs, (15)

and the boundary conditions are given by c1(T ) = 0 and c2(T ) = 0. c0 is given in equation (106)

in Appendix E. The optimal position (in the absence of transaction costs) is given by:

nt = (γΣ)−1(µ0 + µxt)− Σ−1Σsx(c1(t) + c2(t)x) (16)

In particular, if Σsx = 0 then it is optimal to hold the CMVE Markowitz portfolio:

CMV Et = (γΣ)−1(µ0 + µxt). (17)

If Λ is positive definite, then the maximum certainty equivalent is Ht = Wt + J(nt, xt, t)

where

J(n, x, t) = −1

2
n>Q(t)n+ n>(q0(t) + q(t)>x) + c0(t) + c1(t)

>x+
1

2
x>c2(t)x, (18)

where the (matrix) functions Q, q, q0, c1, c2 solve the system of ODEs:11

−
.
Q = γΣ−QΛ−1Q+ q>Ωq + γ(Σsxq + q>Σ>sx) (19)

− .q> = µ− q>κ−QΛ−1q> − q>Ωc2 − γΣsxc2 (20)

− .
c2 = −(c2κ+ κ>c2) + qΛ−1q> − c2Ωc2 (21)

− .
q0 = µ0 −QΛ−1q0 − q>Ωc1 − γΣsxc1 (22)

− .
c1 = −κ>c1 + qΛ−1q0 − c2Ωc1 (23)

11Below we write the system of ODE for the symmetric Q, c2 matrices, which is without loss of generality given
the quadratic objective function.
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subject to boundary conditions Q(T ) = 0, q(T ) = 0, q0(T ) = 0, c1(T ) = 0 and c2(T ) = 0. c0 is

given in equation (119) in Appendix F.

The optimal trading strategy is to trade at a deterministic (matrix valued) trading rate τt towards

an optimal aim portfolio such that:

dnt = τt(aim(xt, t)− nt) dt (24)

τt = Λ−1Q(t) (25)

aim(xt, t) = Q(t)−1(q0(t) + q(t)>xt) (26)

We note that the optimal aim portfolio corresponds to the position that maximizes the value

function, that is aim(t, x) = argmaxn J(n, x, t).

Proof. The derivation of the solution without transaction costs (Λ = 0) is in Appendix E. The

proof of the case with transaction costs is in Appendix F.

The optimal trading strategy for the agent with source dependent utility—summarized in equa-

tions (24)–(26)—takes a form similar to the solutions identified in GP or CDS: the strategy moves

away from the current portfolio nt towards an aim portfolio aim(xt, t) at a rate of τt. However,

in contrast with the GP solution, the aim portfolio now depends on the state vector xt, while the

trading speed remains deterministic.

This solution nests these other findings, in that:

1. Consistent with Merton (1971), even when transaction costs are zero, if security returns are

correlated with innovations in the state-variables (ie., when σxs 6= 0), then the agent will hold

a portfolio that differs from the CMVE Markowitz portfolio. This is true unless the agent

has CMV preferences, in which case c1(t) and c2(t) will be zero.

2. Consistent with GP, when transaction costs are non-zero, it will be optimal to deviate from

the CMVE Markowitz portfolio even when σxs = 0.

3. The optimal trading strategy of GP is independent of covariance matrix of the state-variable.

That is the investor makes the same investment decision if xt were a deterministic process

(even though her expected utility level is affected by state variable volatility)!

In our generalized setting, there are at least two reasons why the aim-portfolio will deviate

from the GP/CDS solution in which the aim portfolio is a weighted average of expected future

MVE portfolios: a traditional “Merton” no-transaction-cost investment-opportunity-set-hedging

demand, and a transaction-cost specific hedging demand.

To understand both components, we next give a few analytical results that characterize the

solution to the CMV objective function (which corresponds to the case where γx = 0 and σxs = 0).In

this case the system has a closed-form solution that is similar to that obtained in GP. It can be

characterized fully in terms of the eigenvalue decomposition of the matrix γΛ−1Σ. Specifically, we

9



define (η, F ) to be the vector of eigenvalues and the matrix of eigenvectors so that

γΛ−1Σ = FDηF
−1 (27)

where Dη is the diagonal matrix with eigenvalue ηi on the ith diagonal, and F is corresponding

matrix of eigenvectors. Then we have the following result:

Theorem 5 When γx = 0 and σxs = 0, the optimal trading speed matrix, τt = Λ−1Q(t), is given

by:

τt = FDh(t)F−1

hi(t) =
√
ηi

1− e−2
√
ηi(T−t)

1 + e−2
√
ηi(T−t)

The optimal aim portfolio of the investor with CMV preferences aim(x, t) = Q(t)−1(q0(t) + q(t)>x)

can be interpreted as a Markowitz portfolio where we replace the expected return vector by a trading-

speed weighted average of future expected returns:

aim(x, t) = (γΣ)−1
∫ T

t
ωt,uµS(t, u)du (28)

ωt,u = (

∫ T

t
e−

∫ z
t τ
>
s dsdz)−1e−

∫ u
t τ
>
s ds (29)

where we define the expected future stock return by

µS(t, u) =
1

dt
Et[dSu] = µ0 + µe−

∫ u
t κdsxt (30)

The CMV-agent portfolio is independent of the covariance matrix (σx, σxs) of the expected return.

Proof. The proof is provided in Appendix G.

We observe that the optimal aim portfolio of the investor with CMV-preferences has the same

form as the Markowitz portfolios, but where the loadings µ on the time-varying return predictors,

xt, are modified to account for the combination of (i) transaction costs (ωt,u) and (ii) persistence (κ

weights). Note that the ω weights only depend on the trading speed τt. Further, they are strictly

positive and integrate to one, that is
∫ T
t ωt,udu = 1. This can be interpreted as an ‘average trade

horizon’: the higher the trading speed is, the shorter the horizon and the more we discount the

future expected factor returns. In addition, since factors with higher κ are expected to revert faster

towards zero,12 the solution implies we should also underweight more, relative to the Markowitz

portfolio, factors which are less persistent (i.e., with a higher mean-reversion rate κ). In particular,

if factors are driven only by permanent shocks, that is κ = 0, then the optimal aim portfolio is the

Markowitz portfolio (since the ω-weights integrate to one by construction).

12Recall that Et[xu] = e−
∫ u
t κdsxt.
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For now we have worked in a finite horizon setting where the link between the CARA normal

setting and the instantaneous mean-variance framework used in the literature is the most straight-

forward to demonstrate. To avoid the explicit time-dependence introduced by the finite horizon

setting, it is useful to extend the setting to an infinite horizon discounted objective function. This

is also the choice made in GP, and CDS. We next show how to generalize this section’s results to a

stationary objective function with infinite horizon and demonstrate the connection to the certainty

equivalent wealth of a source dependent risk-aversion agent with a random horizon.

3 The stationary model with a random horizon

It is natural to consider the stationary problem where we assume that the horizon T is drawn from

an exponential distribution with parameter ρ. In that case we assume that the agent maximizes

her certainty equivalent which is a process (Ht, σH,s, σH,x) which solves the following backward

stochastic differential equation (BSDE):

Ht = Et

[
WT −

∫ T
t

{
1

2
γ||σH,s||2 +

1

2
γx||σH,x||2

}
du

]
(31)

= Wt + Et

[∫ ∞
t

e−ρ(u−t)(dWu −
{

1

2
γ||σH,s||2 +

1

2
γx||σH,x||2

}
du)

]
(32)

One might think that this stationary version of equation (7) should correspond to the certainty

equivalent of a CARA agent who maximizes E[−e−γWT ] for γx = γ. However, we show in the

following theorem that this is not the case. Instead, the objective function (32) corresponds to

that of an agent with source dependent risk-aversion who is risk-neutral with respect to horizon

risk. When we add the risk of a random horizon arrival T to the Brownian risks, (Zs, Zx), the

CARA agent is also risk-averse to that new source of risk and requires an extra premium, as we

illustrate in Remark 7 below. As we show in the next theorem, the objective function in (31)- (32)

corresponds to an agent who does not require a premium for horizon risk. The following theorem

makes this explicit.

Theorem 6 On the filtered probability space generated by (Zs, Zx,1{T ≤t}), consider the process

(Ht, σH,s, σH,x) which solves the following backward stochastic differential equation (BSDE):

Ht = Et

[
WT −

∫ T
t

{
1

2
γ||σH,s||2 +

1

2
γx||σH,x||2 + ρ

(
Ws −Hs− −

1− e−γT (Ws−Hs− )

γT

)}
ds

]

Then Ht is the certainty equivalent of an agent with source-dependent constant absolute risk-

aversion, with CARA γ toward Zs shocks, γx towards Zx shocks, and γT towards the horizon

arrival shock, 1{T ≤t}, which triggers a jump in H. It nests the special cases:

• When γT = γx = γ, it is the certainty equivalent of an agent with negative exponential CARA
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expected utility:

Ht = −1

γ
log(Et[e

−γWT ]). (33)

• When γT = 0, it reduces to the objective function (a stationary version of (7)) proposed

in (32).

• When γT = 0, γxσx = 0 and σxs = 0, it reduces to the discounted CMV objective function:

Ht = Wt + Et

[∫ ∞
t

e−ρ(u−t)
{
dWu −

1

2
γdW 2

u

}]
. (34)

Proof. The proof is provided in Appendix D.

Remark 7 To understand why a CARA investor dislikes horizon risk, consider the simple case

where dWt = µdt+ σdZst , that is wealth is solely driven by one Brownian motion. Then, consider

the expected utility of the CARA agent

E[−e−γWT ] = −e−γW0

∫ ∞
0

ρe−ρt−γ(µ−
1
2
γσ2)tdt = − e−γW0

1 +
γ(µ− 1

2
γσ2)

ρ

.

Her expected utility of terminal wealth at the expected arrival time E[T ] = 1
ρ is given by:

E[−e−γW1/ρ ] = −e
−γ(W0+µ−

1
2 γσ

2)

ρ

Since ez > 1 + z for all z 6= 0 and in particular for z =
γ(µ− 1

2
γσ2)

ρ we see that for this CARA agent:

E[U(WT )] < E[U(WE[T ])] ⇐⇒
γ(µ− 1

2γσ
2)

ρ
6= 0

This follows from Jensen’s inequality. We see that a risk-premium for horizon risk arises as

soon as the expected return on total wealth does not exactly compensate the investor for its diffusion

risk (in the example as long as µ− 1
2γσ

2 6= 0). If the agent’s terminal wealth were guaranteed and

independent of the horizon (i.e., µ = σ = 0 in the example) then, a consequence of time-separable

utility, is that the agent would not care about horizon risk. With CARA utility the risk-aversion

coefficient associated with the horizon risk T is the same as that associated to the Brownian motion

shocks Zs, Zx that drive financial wealth. Instead, with our source-dependent utility, the agent

can have different risk-aversion coefficients associated with the three different sources of risk. The

standard discounted CMV preferences used in GP, Litterman, and others correspond to an agent

who is risk-neutral towards horizon risk.

In the following we focus on the solution of the agent with preferences given in (32), which

corresponds to the stationary version of the problem considered in the previous section. The
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following theorem describes the optimal solution, and is the analogue to Theorem 4 with an infinite

horizon.

Theorem 8 Suppose an agent maximizes her certainty equivalent Ht defined in equation (32) by

choosing her optimal position vector nt given wealth dynamics given in equation (6).

If there are no transaction costs (Λ = 0), then the maximum certainty equivalent is

Ht = Wt + J(xt) where

J(x) = c0 + c>1 x+
1

2
x>c2x, (35)

where the (matrix) functions c1, c2 solve the system of ODEs:

ρc1 = (µ− γΣsxc2)
> (γΣ)−1µ0 − {(µ− γΣsxc2)

>Σ−1Σsx + c>2 Ω + κ>}c1 (36)

ρc2 = c>2

(
γΣ>sxΣ−1Σsx − Ω

)
c2 + 2c>2 (−κ− Σ>sxΣ−1µ) + µ>(γΣ)−1µ. (37)

The equation for c0 is provided in the Appendix. The optimal position (in the absence of transaction

costs) is:

nt = (γΣ)−1(µ0 + µxt)− Σ−1Σsx(c1 + c2x) (38)

Note that, in particular, if Σsx = 0, then it is optimal to hold the CMVE Markowitz portfolio.

If Λ is positive definite, the maximum certainty equivalent is Ht = Wt + J(nt, xt), where

J(n, x) = −1

2
n>Qn+ n>(q0 + q>x) + c0 + c>1 x+

1

2
x>c2x, (39)

where the coefficient matrices Q, q, q0, c1, c2 solve the system of ODEs:13

ρQ = γΣ−QΛ−1Q+ q>Ωq + γ(Σsxq + q>Σ>sx) (40)

ρq> = µ− q>κ−QΛ−1q> − q>Ωc2 − γΣsxc2 (41)

ρc2 = −(c2κ+ κ>c2) + qΛ−1q> − c2Ωc2 (42)

ρq0 = µ0 −QΛ−1q0 − q>Ωc1 − γΣsxc1 (43)

ρc1 = −κ>c1 + qΛ−1q0 − c2Ωc1 (44)

and c0 is given in the Appendix.

The optimal trading strategy is to trade at a stock-specific constant trading rate (matrix) τ

towards an optimal aim portfolio such that:

13Below we write the ODE for symmetric Q, c2 matrices, wlog.
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dnt = τ(aim(xt)− nt) dt (45)

τ = Λ−1Q (46)

aim(x) = Q−1(q0 + q>x) (47)

We note that the optimal aim portfolio corresponds to the position that maximizes the value

function, that is aim(x) = argmaxn J(n, x).

Proof. The derivation of this solution (with Λ = 0) is given in appendix H. The derivation of the

solution of the case with non-zero transaction costs is given in appendix I.

Thus, as in the finite horizon case described in the previous section, the optimal trading strategy

for the agent with source dependent utility has the same form as that obtained in GP or CDS.

Specifically, it is optimal to trade from the current position nt towards an aim portfolio aim(xt) at

a constant trading speed matrix τ .

To better understand the role of hedging demands in shaping the aim portfolio, we will compare

numerically in the following section the optimal solution for the CARA agent to that of the CMV

investor. Recall that in he absence of transaction costs, the CMV investor always holds the CMVE

portfolio. With transaction costs however, the solutin of the CMV investor can be characterized

explicitly (setting γx = 0 and σxs = 0 in theorem 5), in terms of the eigen-value decomposition of

the matrix γΛ−1Σ. Specifically, we define (η, F ) to be the vector of eigenvalues and the matrix of

eigenfactors so that

γΛ−1Σ = FDηF
−1 (48)

where Dη is the diagonal matrix with eigenvalue ηi on the ith diagonal. Then we have the following

result:

Theorem 9 When γx = 0 and σxs = 0 then the optimal trading speed matrix τ = Λ−1Q is given

by:

τ = FDhF
−1

hi =
1

2
(
√
ρ2 + 4ηi − ρ)

The optimal aim portfolio aim(xt) = Q−1(q0 + q>xt) of the GP investor can we written as a

Markowitz portfolio where we replace the instantaneous expected stock return µS(xt) = 1
dtEt[dSt] =
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µ0 + µxt by the trading speed discounted value of the future stock expected returns:

aim(xt) = (γΣ)−1
∫ ∞
0

ωuEt[µS(xt+u)]du (49)

ωu = (ρ+ τ>)e−(ρ+τ
>)u (50)

Proof. The proof is in the appendix K

Note that by definition
∫∞
0 ωudu = 1, therefore we have that if κ = 0 then the optimal aim

portfolio is the Markowitz portfolio. Only if there is some persistence in the factors that predict

returns, is it optimal to deviate from the Markowitz portfolio. Of course, in the case where σxs 6= 0

then this result will no longer hold, as the investor will want to aim towards a portfolio that is also

driven by its desire to hedge against variations in the investment opportunity set. The next section

explores quantitatively the importance of these hedging demands.

In the general case it is possible to express the aim portfolio as follows:

aim(xt) = Q−1(q0 + q>xt) (51)

= (γΣ + q>Ωq + 2γΣsxq)
−1
∫ ∞
0

ωu

{
µ0 + µe−κuxt − (γΣsx + q>Ω)(c1 + c2e

−κuxt)
}
du

(52)

ωu = (ρ+ τ>)e−(ρ+τ
>)u (53)

This allows us to interpret the hedging demands in three scenarios. First, if σxs = 0 and γx = 0,

then Ω = 0, and we recover the CMV preferences. Second, if σxs = 0 and γx 6= 0, then in the

absence of transaction costs, it is optimal to hold the CMVE Markowitz portfolio (i.e., there are

no hedging demands). However, with transaction costs, we do deviate from both the Markowitz

portfolio and the CMV aim portfolio. Finally, if σxs 6= 0 and there are no transaction costs, then

it is optimal to deviate from the Markowitz portfolio because of hedging demands. The optimal

portfolio becomes (γΣ)−1(µ0 + µxt) − Σ−1Σsx(c1 + c2x). In the presence of transaction costs, we

have the same structure in the optimal portfolio, but we need to take the weighted average of the

expected return of a similar portfolio. The equation is more difficult to interpret, especially in

the multi-asset case (note also that the numerical values for the c1, c2 matrices are different with

and without t-costs). Therefore we turn to some specific examples and numerical simulations to

illustrate the predictions of the model.

4 Hedging Demand and Transaction Costs: Numerical Example

4.1 The one Asset and one predictor case

To illustrate the model’s predictions we first focus on the one asset-one factor case (that is N =

K = 1) for the case where µ0 = 0, that is there is one single stock St and one single predictor

variable xt with dynamics:
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dS(t) = µxt dt+ σ1dZ1(t) (54)

dxt = −κx(t)dt+ σx1dZ1(t) + σx2dZ2(t) (55)

where Zi(t) are independent Brownian motion.

We can solve the optimal portfolio of the non-myopic agent in the stationary case using Theorem

8.

For the case where there are no transaction costs, that is when Λ = 0, we find the optimal

portfolio can be decomposed into the CMVE portfolio and a hedging portfolio HP that is:

nt = CMV Et +HPt (56)

CMV Et =
µ

γσ21
xt (57)

HPt = −
2( µσ1 )2 σx1σ1

γ(2κ+ ρ+ 2 µ
σ1
σx1 +

√
(2κ+ ρ+ 2 µ

σ1
σx1)2 + 4γxγ ( µσ1 )2σ2x2

xt (58)

As expected the non-myopic agent deviates from the CMVE portfolio if and only if σx1 6= 0. She

invests more in the stock the more negative is the covariance between xt and St.

Turning now to the case with t-costs (setting Λ11 = λ2 > 0), we first focus on the agent with

CMV preferences. Recall that absent t-costs this agent would have myopic (locally mean-variance

preferences), but deviates from that portfolio in the presence of t-costs.

Applying Theorem 9 we can derive the optimal aim portfolio and trading speed as follows:

aimCMV
t =

ρ+ τ

ρ+ τ + κ

µ

γσ21
(59)

τ =
1

2
(

√
ρ2 + 4γ

σ21
λ2
− ρ) (60)

We note that the CMV-agent’s aim portfolio always holds the CMVE portfolio only if κ = 0,

otherwise her holdings are strictily decreasing in κ and increasing in ρ + τ . The trading speed

τ ∈ (0,∞) is strictly increasing in γ(σ1λ )2.

Note that her optimal trading strategy, that is both the aim portfolio and trading speed, are

independent of the covariance matrix of xt, in that the CMV-agent would trade identically if xt

were deterministic (that is if σx1 = σx2 = 0).

Instead, if we consider the non-myopic agent with CARA with respect to both return and

expected return shocks, applying theorem 8 we find that her aim portfolio and trading speeds are

given by:
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aimt =
ρ+ τ

ρ+ τ + κ

µ− (γσ1σx1 + Ωq)c2
γσ21 + q2Ω + 2γσ1σx1q

(61)

τ =
1

2

(√
ρ2 + 4

{
γ(
σ1
λ

+
q

λ
σx1)2 +

q2

λ2
γxσ2x2

}
− ρ

)
(62)

c2 =

√
(2κ+ ρ)2 + 4Ω q2

λ2
− ρ− 2κ

2Ω
(63)

where q is the constant that solves the following non-linear equation:14

c2(γσ1σx1 + Ωq) + q(ρ+ κ+ τ) = µ (64)

We see that, unlike for the CMV-agent, the non-myopic agent’s optimal aim portfolio and

trading speed are affected by the covariance matrix of the expected returns. In particular, her aim

portfolio may actually hold more stock than the CMVE portfolio. We illustrate that with a few

figures.

In figures 1-3 we compare trading strategies corresponding to different objective functions and

for different sets of parameters. We are particularly interested in how the hedging demand of a

non-myopic investor shapes her optimal trading strategy in the presence of transaction costs. Thus

we report the trading strategy of an CMV investor who has the objective function (used by GP and

CDS among others) given in (34), which is known to be myopic in the absence of transaction costs,

and compare it with that of a source dependent risk-aversion investor (CARA) who maximizes (32)

with γx = γ and thus is risk-averse with respect to changes in the investment opportunity set.15

Figure 1 reports results for low trading costs and for a positive expected return signal (x0 = 1).

As expected, it shows that the CMV investor’s optimal aim portfolio is very close to the mean-

variance efficient Markowitz portfolio. Further, the CMV investor’s strategy is independent of

the correlation coefficient between the expected return signal and price changes. Instead, we see

that for low transaction costs the CARA investor chooses a portfolio very similar to that of the

classic no-transaction-cost Merton solution. Specifically, she displays a very large and positive

hedging demand for the asset when correlation between x and dS becomes negative. This because

the investor invests for the long run and perceives stock returns to be less risky for the long-run

due to the negative correlation between expected returns and stock price changes. With negative

correlation, expected returns changes offer a natural hedge for shocks to stock prices.

When we increase trading costs to more realistic levels, we see in figure 2 that the CMV

investor chooses an aim portfolio that is uniformly lower than the Markowitz portfolio across all

the correlation range. Intuitively, because of transaction costs the investor has to trade slowly into

14Note that the equation admits a strictly positive solution for any µ > 0, since the left-hand side equals zero when
q = 0 and tends to infinity when q →∞ (see Appendix J for details).

15Note that since we assume γT = 0, the investor we consider is risk-neutral with respect to horizon realization
risk.
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Figure 1: Parameters: µ0 = 0, µ = 1, κ = 0.1, σs = 0.3, σx = 0.1, Λ = 2 × 10−11, γx = 10−9, γ = 10−9,
x0 = 1, ρ = 0.8.

her desired stock position. Because the signal also decays at rate κ > 0, it follows from theorem

9, that it is optimal to aim for a smaller position as the effective expected return that will be

earned over the ‘average’ horizon of the position is lower than in the absence of transaction costs or

with more persistent expected returns. This insight, which was also at the heart of GP’s original

paper, carries over for the non-myopic CARA investor, but only for positive correlation coefficients.

Instead figure 2 shows that, surprisingly, when the correlation between signal and price change is

sufficiently negative, the hedging demand can actually lead the investor to want to aim for a larger

position in the risky asset than she would have chosen in the absence of transaction costs. We see

on the picture that the point where the CARA-TC aim portfolio is larger than the Merton solution

occurs for a correlation coefficent (between dS and dx) around −60%. Panel two on the same

figure also shows that this coincides with a very steep drop in the trading speed. Instead, the

CMV investor chooses the same constant trading speed irrespective of the level of the correlation

coefficient.

Our results suggest that if the correlation between stock returns and their expected growth

rates is sufficiently negative, then a long-term investor will want to hold more risky stocks in the

presence of transaction costs than without, even though the expected return is decaying over time.

At the time the investor will want to trade at a much lower speed than if she were myopic.

Our intuition for this surpising result is that, because of the negative correlation, the investor

expects a lower expected return following a positive shock to stock prices and thus wants to trade

out of stocks. Conversely, she will want to trade into stocks following a negative price shock. The

aim portfolio is set so as to optimally trade-off the utility cost of deviating from the first-best

portfolio and the transaction costs. When evaluating the cost of additional trading, the long-term

agent weights these with her marginal utility. Thus costs that paid following the negative stock

price shock will be weighted more. Therefore it can be optimal to aim for a higher stock position
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Figure 2: Parameters: µ0 = 0, µ = 1, κ = 0.1, σs = 0.3, σx = 0.1, Λ = 2 × 10−10, γx = 10−9, γ = 10−9,
x0 = 1, ρ = 0.8.

and trade less to avoid paying the transaction costs in the high marginal utility states (following a

negative stock price shock).
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Figure 3: Parameters: µ0 = 0, µ = 1, κ = 0.4, σs = 0.3, σx = 0.1, Λ = 2 × 10−10, γx = 10−9, γ = 10−9,
x0 = 1, ρ = 0.8.

In Figure 3 we show the effect of having a less persistent signal (with a higher κ). Since the

expected return decays faster, the effective expected return earned over the life of the position

decreases. Thus the myopic CMV investor decreases her position more relative to the Markowitz

portfolio, which is unchanged. Similarly, the CARA investor in the presence of transaction costs

reduces her position relative to the no t-cost Merton solution. Still we see that because of hedging

demands, for sufficiently negative correlation (close to -80% in this case), the CARA investor’s aim

portfolio becomes larger than what she would choose in the absence of transaction costs. So even
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for fast decaying parameters, the hedging demands affect the optimal position of the long-term

investor significantly.

The hedging demand of a non-myopic investor leads to a significantly different trading strategy

than for a myopic investor in the presence of transaction costs. Below, we quantify with a realistic

calibration the utility-based cost for a long-term investor of not properly accounting for the hedging

demand in the presence of transaction costs.

4.2 The two asset and one predictor case

To illustrate the role of hedging demands in shaping the optimal portfolio choice we consider a very

specific setup with two stocks with dynamics given by

dS1(t) = µxt dt+ σ1dZ1(t) (65)

dS2(t) = σ2dZ2(t) (66)

dxt = −κx(t)dt+ σx2dZ2(t) (67)

where Zi(t) are independent Brownian motion. We further assume that the transaction cost matrix

is diagonal with λ11 = λ21 and Λ22 = λ22. This is a special case of our general framework. We can

solve the optimal portfolio of the non-myopic agent in the stationary case using Theorem 8. For

the case where there are no transaction costs, that is when Λ = 0, we find the optimal portfolio

can be decomposed into the CMVE portfolio that only loads on asset 1, and a hedging portfolio

HP given by:

nt = CMV Et +HPt (68)

CMV Et = [
µxt
γσ21

; 0]> (69)

HPt = [0;− µ2σx2
γσ21σ2(ρ+ 2κ)

xt]
> (70)

We see that the myopic agent only trades asset 1, but has no demand for asset 2, since the

latter has zero expected (excess) return and positive variance. It therefore does not improve the

conditional mean-variance efficient frontier. Instead, asset 2 is correlated with asset 1’s expected

return and therefore is desirable to trade for a non-myopic agent as it allows to hedge against

changes in the investment opportunity set. Indeed, we see that the hedging portfolio goes long

asset 2 if it is negatively correlated with asset 1’s expected return and shorts it otherwise. Since

asset 1 has zero correlation with its expected return, it is not traded for hedging purposes.

Our example is engineered such that each asset is uniquely associated with the CMVE and the

HP portfolios respectively. We now turn to the case with transaction costs (with λi > 0 ∀i = 1, 2)

to see how the assets enter the aim portfolio.
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We start with the CMV-utility agent. Applying Theorem 9 we can derive the optimal aim

portfolio and trading speed as follows:

aimCMV
t = [

ρ+ τ11
ρ+ τ11 + κ

µ

γσ21
; 0]> (71)

τ11 =
1

2
(

√
ρ2 + 4γ

σ21
λ21
− ρ) (72)

τ22 =
1

2
(

√
ρ2 + 4γ

σ22
λ22
− ρ) (73)

τ12 = τ21 = 0 (74)

Since the aim portfolio for a CMV-investor is the trading-speed discounted value of the future

expected CMVE portfolios and given that the latter only hold asset 1, we see that the aim portfolio

only comprises asset 1 as well. The trading speed is a diagonal matrix, which implies that positions

in asset 2 do not affet how to optimally trade asset 1. Instead, the optimal strategy is for the

agent to trade out of any initial position she might have in asset 2 at a constant trading speed and

towards 0, the optimal position for asset 2 in the CMVE portfolio. Thus for a myopic-CMV agent,

trading in asset 2 occurs only in as much as she would be endowed with a non-zero position in that

asset. As in the case without trading costs, there is no motive for trading (or holding) asset 2 in the

case with transaction costs. We also see, consistent with our general results, that the CMV-agent’s

optimal aim and trading speed are not affected by the covariance matrix of the expected return

variable xt.

We now turn to the optimal aim portfolio for non-myopic CARA agent, and show that for

such an agent with a long-horizon, the variance of expected returns and its covariance with the

underlying stocks dramatically affect her optimal holdings in the aim portfolio as well as the trading

speed matrix.

Solving the system for the optimal aim portfolio and trading speed reduces to a system of

non-linear equation:

aimt = Q−1q (75)

Q = Λτ (76)

τ11 =
1

2
(

√
ρ2 + 4γ

σ21
λ21

+ 4γ
q21
λ21
σ2x2 − 4

λ21
λ22
τ212 − ρ) (77)

τ22 =
1

2
(

√
ρ2 + 4γ(

σ2
λ2

+
q2
λ2
σx2)2 − 4

λ21
λ22
τ212 − ρ) (78)

τ12 =
λ22
λ21
τ21 =

λ2
λ1

γ σ2q1λ2λ1
σx2 + γ q1q2λ1λ2

σ2x2

ρ+ τ11 + τ22
(79)
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and where the q1, q2, c2 solve

c2 =

−ρ− 2κ+

√
(ρ+ 2κ)2 + 4(

q21
λ21

+
q22
λ22

)γσ2x2

2γσ2x2
(80)

µ = q1(κ+ ρ+ c2γσ
2
x2 + τ11) + q2

λ21
λ22
τ12 (81)

−c2σ2γσx2 = q2(κ+ ρ+ c2γσ
2
x2 + τ22) + q1τ12 (82)

We solve this system numerically and show how aim portfolio changes with parameter of the

model, and in particular with the diffusion coefficients of xt. We specifically compare the optimal

solution for the non-myopic CARA agent with the benchmarks we have specified earlier. Figure 4

illustrates the aim portfolios in asset 1 (left panel) and asset 2 (right panel) as σx2 is varied. For

asset 1, the aim portfolios are the same for CMV (CMVE) and non-myopic CARA (Merton) agent.

For asset 2, both CMV and CMVE agents have zero desired position whereas non-myopic CARA

and the Merton agents differ considerably due to the positive or negative σx2. We find that relative

to Merton solution, non-myopic CARA agent shrinks her portfolio slightly to zero to mitigate the

impact of transaction costs. Figure 5 illustrates the aim portfolios in asset 1 (left panel) and asset

2 (right panel) as κ is varied while keeping σx2 = −0.5. For asset 1, the aim portfolios are the

same and constant for CMVE and Merton agents while CMV and non-myopic CARA reduce their

position in asset 1 as κ increases. Further, while the Merton agent also reduces her position in

asset 2, non-myopic CARA agent responds more dramatically as κ is increased.
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Figure 4: Parameters: µ0 = 0, µ = 1, κ = 0.5, σ1 = 0.3, σ2 = 0.1, σx = 0.2, Λ = 0.01Σ, γx = 10−6,
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5 Empirical Application with the Informativeness of Retail Order

Flow

In this section, we implement our methodology based on the recent findings that net retail order

flow predicts future returns at the stock level. (Boehmer, Jones, Zhang, and Zhang, 2021) propose

an easy algorithm to identify marketable retail purchases and sales and find that individual stocks

with net buying by retail investors outperform stocks with net sells over the following week. We

will use retail order imbalance at the stock level as a predictor for next day returns.

We realistically calibrate transaction costs based on a large institutional order data. We illus-

trate that there are economically significant benefits of using our approach for a CARA investor

in an out-of-sample experiment compared to a CMV investor who ignores the correlation between

the innovations in stock prices and predictors.

5.1 Model calibration

Using three-year data between 2014-01-01 and 2016-12-31, we first test the relation between net

retail order flow and subsequent daily returns. We use two stocks from the top 5 stocks having

the largest market capitalization as of 2013-12-31, Johnson and Johnson (JNJ) and Exxon Mobil

(XOM). We will assume that our first asset is JNJ and second asset is XOM in our matrix notations

going forward. We will first calibrate the model using percentage returns and then scale them

appropriately in our out-of-sample experiment. We will use the superscript scl to denote that this

parameter will be scaled.

Let N b
i,t (N s

i,t) be the number of retail buy (sell) orders on stock i and day t, using the the retail

trade classification of Boehmer, Jones, Zhang, and Zhang (2021). Our return predictor at the stock

level is then given by

xi,t =
N b
i,t −N s

i,t

N b
i,t +N s

i,t

.

We then run the following regressions with our two stocks to test the empirical relation between

net retail order flow and subsequent daily returns:

r1,t+1 = β1x1,t + ε1,t+1 (83)

r2,t+1 = β2x2,t + ε2,t+1 (84)

(85)

Table 1 reports the regression results where standard errors are adjusted for heteroskedasticity.

In both specifications, the coefficients are quite similar in magnitude with being close to 60 bps

and they are both significant at 10% level. Using these regression results, we calibrate µscl to be[
0.0058 0

0 0.0057

]
. Since the constants in Table 1 are insignificant, we will set µ0 to be the zero
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vector, i.e.,

[
0

0

]
.

Dependent variable:

r1,t+1 r2,t+1

x1,t (JNJ) 0.0058∗

(0.0032)

x2,t (XOM) 0.0057∗

(0.0034)

Constant 0.0002 0.00005
(0.0004) (0.0004)

Observations 755 755
Adjusted R2 0.0030 0.0025

Table 1: Net retail order flow imbalance and subsequent returns

We then compute the variance-covariance matrix of the daily returns, Σscl = Var(ε) where

ε = [ε1 ε2]. Using this estimation, we calibrate Σscl to be 10−4 ×

[
0.874 0.537

0.537 1.513

]
.

We estimate the mean-reversion parameters of the predictors by running the following regres-

sions at the stock level:

∆x1,t+1 = −κ1x1,t + ε1,t+1 (86)

∆x2,t+1 = −κ2x2,t + ε2,t+1 (87)

Table 2 reports the regression results. For both stocks, the net retail order flow exhibits strong

mean-reversion characteristics with statistically significant AR(1) coefficients. Our results show

that this stock-level signal is quite fast-decaying. For JNJ stock, the half-life of the net retail order

imbalance signal is approximately one-day while for XOM stock the half-life of the signal is 1.6

days. This analysis leads to the calibration of κ with

[
0.4862 0

0 0.3469

]
.

Σx can be estimated by computing the variance-covariance matrix of the innovations in the

predictors, εt+1. We obtain Σx to be

[
0.0108 0.0048

0.0048 0.0123

]
. Finally, Σscl

sx is given by the sample

covariance between εt+1 and εt+1 which yields the following matrix:

Σscl
sx = 10−4 ×

[
−3.425 −2.042

−3.071 −5.897

]
.

The negative values in this covariance matrix are striking. At the individual stock level, it suggests
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Dependent variable:

∆x1,t+1 ∆x2,t+1

x1,t (JNJ) −0.4862∗∗∗

(0.031)

x2,t (XOM) −0.3469∗∗∗

(0.028)

Constant 0.020∗∗∗ 0.002
(0.004) (0.004)

Observations 755 755
Adjusted R2 0.243 0.173

Table 2: AR(1) regressions of net retail order flow imbalance

that when there is a positive shock to the price of either JNJ or XOM, there will be less retail

buying activity on these stocks contemporaneously. This is consistent with a contrarian trading

strategy at the aggregate retail level, i.e., retail traders tend to sell (buy) a stock with positive

(negative) daily returns.

5.2 Calibration of the Transaction Costs

To calibrate the transaction cost multipliers of our model realistically, we use proprietary execution

data from the historical order databases of a large investment bank. The orders primarily originate

from institutional money managers who would like to minimize the costs of executing large amounts

of stock trading through algorithmic trading services. The data consists of two frequently used

trading algorithms, volume weighted average price (VWAP) and percentage of volume (PoV). The

VWAP strategy aims to achieve an average execution price that is as close as possible to the volume

weighted average price over the execution horizon. The main objective of the PoV strategy is to

have constant participation rate in the market along the trading period.

The execution data covers S&P 500 stocks between January 2011 and December 2012. Execution

duration is greater than 5 minutes but no longer than a full trading day. Total number of orders

is 81,744 with an average size of approximately $1 million. The average participation rate of the

order, the ratio of the order size to the total volume realized in the market, is approximately 6%.

We use the top 50 stocks in terms of market capitalization to estimate the price impact for a liquid

subset.

The standard measure of institutional trading costs is given by implementation shortfall (IS).

It is computed as the normalized difference between the average execution price and the mid-quote

price of the asset prior to the start of the execution. Formally, the IS of the ith parent-order is
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given by

ISi = Di
P avg
i − Pi,0
Pi,0

, (88)

where Qi is the order size (in shares) with Qi > 0 (Qi < 0) for buy (sell) orders, P avg
i is the

volume-weighted execution price of the parent-order, Di equals 1 (−1) if the order is buy (sell),

and Pi,0 is the mid-quote price of the security (arrival price) when the parent order starts being

executed.

We first estimate the price impact coefficient as a function of the ratio of the order size to the

daily volume using the complete data set. Formally, we run the following regression with our order

data from 50 largest stocks:

ISi = θ
Qi

DayV lmi
+ εi

where Qi is the number of shares to be bought or sold, DayV lmi is the daily volume of the stock.

Here, Qi
DayV lmi

measures the size of the order as a fraction of the total daily volume. We measure

IS in basis points.

Table 3 illustrates the estimated coefficient, θ. The reported standard errors are clustered

at the calendar day level. We find that θ is statistically significant with a t-statistic of 3.9. The

economic magnitude is also large. For an order that aims to trade 1% of daily volume, the expected

transaction cost is 3.6 bps.

Dependent variable:

IS (bps)

Q
DayV lm 363.20∗∗∗

(91.66)

Constant 0.52
(1.12)

Observations 16,532
Adjusted R2 0.001

Table 3: Estimation of the price impact from institutional order data set

According to our quadratic transaction cost model, trading Q shares of stock i would move its

(average) price by λiQ
2 where λi is its price impact coefficient. Since the typical daily volume of the

stocks will differ, we can calibrate the price impact coefficients at the stock level by utilizing the

average daily volume of each stock in the sample period. Let V̂i,t be the daily volume for stock i

on day t. Then, λscli,t would be given by 2θ
Vi,t

on a single calendar day t. We set λscli to be the sample

average across all trading days, i.e., λscli = 2θ
T

∑T
t=1

1
Vi,t

. Put differently, λscli = 2θẐi where Ẑi is
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a measure of average turnover given by 1
T

∑T
t=1

1
Vi,t

. For JNJ (XOM), we have Ẑ1 = 1.43 × 10−7

(Ẑ2 = 8.8× 10−8) suggesting that JNJ’s price impact coefficient is roughly 60% larger than that of

XOM. Computing the λ for JNJ and XOM, we obtain the calibration of Λscl in matrix notation:

Λscl =

[
λscl1 0

0 λscl2

]
= 10−3

[
0.1040 0

0 0.0645

]
.

5.3 Out-of-sample experiments

In this section, we compare the trading policies for CARA and CMV agents for several non-

overlapping out-of-sample investment horizons. As we noted in the previous section, our model

parameters will be scaled appropriately with the initial stock price observed at the beginning of

each investment horizon, j.16 Let the initial stock prices equal Sj0 =

[
Sj1,0
Sj2,0

]
for this out-of-sample

period j. Both agents will then use the following scaled parameters in the jth out-of-sample period:

µj = µscl diag(Sj0) (89)

Σj = diag(Sj0)Σscl diag(Sj0) (90)

will be observed and the agents will trade according

5.4 Aim Portfolios

Using these parameters, we first compute the aim portfolios corresponding to the traditional

Markowitz and Merton portfolios which ignore trading costs and the aim portfolios correspond-

ing to the CARA and the CMV investor in the presence of trading costs. Figure 6 illustrates the

aim portfolios of each policy as a function of xt. Note that since µ0 is equal to zero, the aim

portfolios cross at the origin. Given the negative correlation, we observe that Merton portfolio has

higher positive slope compared to the Markowitz portfolio.

5.5 Performance of CARA and CMV Policies

We use the filtered values of xt and divide the sample into 112 trading intervals of 126 trading days

(i.e., six-months) to evaluate the performance of the CARA and CMV policies in the presence of

trading costs. At the beginning of each interval, we start with $0 and trade according to trading

policies determined by CARA and CMV policies, using the previously estimated return and t-

cost parameters. We compute the stock position in shares and the total accumulated wealth after

subtracting the trading costs paid every day. Utilizing all of the samples, we can compute the

average utility corresponding to each policy and the resulting certainty equivalent wealth for both

policies. Below we estimate the utility cost for a CARA investor of following the ‘sub-optimal’

policy of an CMV investor (who effectively ignores Merton-style hedging demand).

16For j > 1, Sj0 will be the last price observed in the previous period, i.e., Sj−1
T .
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Figure 6: Aim portfolios of four different policy as a function of xt.

Table 4: Policy comparison.

Statistic CARA-TC CMV-TC Diff
Avg Util -0.9993 -0.9995 1.96× 10−4

S.E 1.3× 10−4 0.9× 10−4 3.8× 10−5

CE 72,228 52,569 19,659

Figure 7 compares the CARA policy to the CMV policy in a single path. The top-left panel

illustrates that the difference in wealth is increasing as time elapses. The top-right panel suggests

that the CARA policy is more aggressive compared to the CMV policy. This is driven by the

relatively higher slope of the CARA policy that we observed in the comparison of the aim portfolios

in the prior section. We can see that this aggressiveness leads to higher trading costs for the CARA

investor but this loss is compensated with higher profits made from the aggressive position as

illustrated in the top-left panel.

We find that these observations hold for the average of all paths as well. Figure 8 compares

the CARA policy to the CMV policy by taking the average of all statistics across 112 trials. The

top-left panel illustrates on average the wealth is higher for the CARA investor. The top-right

panel suggests that the CARA policy is again more aggressive compared to the CMV policy on

average basis. The bottom panel illustrates the cumulative certainty-equivalent wealth across all

samples and we find that CARA policy achieves significantly higher certainty equivalent throughout

the 6-month horizon. As we can see in table 4 the certainty equivalent achieved by making use

of hedging demands is 37% higher for the CARA investor. So the utility loss of using the t-cost

optimal policy of a myopic investor, that does not adjust the aim portfolio and trading speed to

account for the negative correlation between expected returns stock returns, is very substantial for

long-term investor with standard expected utility.
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6 Conclusion

In the presence of time-varying expected returns, long-term investors with CARA utility who ignore

trading costs deviate from the conditional mean-variance efficient portfolio to hedge against the

negative impact of the time variation in expected returns on the marginal utility of the investor. In

the recent literature, the dynamic trading policy based on conditional mean-variance preferences

that incorporates transaction costs has been very popular. Surprisingly, this trading policy has no

hedging component. We propose a set of preferences based on stochastic differential utility with

source-dependent risk-aversion, which nest the widely used conditional mean-variance and CARA

utility.

We derive an explicit solution for the portfolio choice problem in the presence of quadratic

t-costs with arbitrary number of stocks and predictability in returns in terms of an optimal aim

portfolio and trading speed. We show that, for a non-myopic CARA investor, the hedging demand

has large effect on optimal aim portfolio and trading speed, especially when the correlation between

stock return and predictor is negative. In a realistic calibration where we time the S&P 500 return

based on its filtered latent predicted expected return, hedging demands significantly affect strategy

performance.
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Figure 7: This figure compares the in-sample performance of the CARA policy with the CMV policy in
the presence of trading costs for a single path. Both strategies start from zero-wealth. CARA policy is
the optimal policy corresponding to an investor with CARA preferences. CMV policy is the optimal policy
corresponding to an investor with CMV-preferences. Top-left panel shows the cumulative wealth of each
policy. Top-right panel shows the each strategy’s share position in the S&P 500 index. Bottom-left panel
displays the filtered xt values for the single path. Bottom-right panel illustrates the cumulative trading costs
paid by each policy due to the rebalancing of the strategies.
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Figure 8: This figure compares the average performance of the CARA policy with the CMV policy in the
presence of trading costs across all 112 6-month trading periods. Both strategies start from zero-wealth.
CARA policy is the optimal policy corresponding to an investor with CARA preferences. CMV policy is
the optimal policy corresponding to an investor with CMV preferences. Top-left panel shows the mean
cumulative wealth of each policy. Top-right panel shows the each strategy’s average share position in the
S&P 500 index. Bottom-left panel displays the average filtered xt values for the single path. Bottom-right
panel illustrates the average cumulative trading costs paid by each policy due to the rebalancing of the
strategies. The bottom panel displays the cumulative certainty-equivalent wealth.
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APPENDIX

A Stochastic Differential Utility of Terminal Wealth

Consider an agent with a wealth process Wt who trades in a financial market, where the uncertainty

is generated by a vector of independent Brownian motion Z(t), and who has expected utility of

terminal wealth with twice-differential, increasing and concave utility function U(WT ). Note that

by definition Mt = Et[U(WT )] is a martingale and therefore we may write:

dMt = σ>MdZt

Now define the certainty equivalent process Ht = U−1(Mt) which satisfies the boundary condition

HT = WT . Defining

dHt = µHdt+ σ>HdZt (91)

Then we have

dU(Ht) =

(
1

2
U ′′(H)||σH ||2 + U ′(H)µH

)
dt+ U ′(H)σ>HdZt

Since Mt = U(Ht) comparing the two processes we get:

µH = −1

2

U ′′(H)

U ′(H)
||σH ||2 (92)

It follows that we can define the certainty equivalent of an investor who has expected utility of

terminal wealth as the solution (Ht, σH) of a backward-stochastic differential equation:

Ht = Et[WT −
∫ T

t
µH(Ht, σH)dt] (93)

where the driver of the BSDE is given in equation (92) above.

To summarize, we have shown that, for an agent with an arbitrary wealth process Wt driven

by a vector or N Brownian motions, who has expected utility of terminal wealth E[U(WT )], we

can define his certainty equivalent Ht in two different ways. First, the traditional definition Ht =

U−1(Et[U(WT )]). Second, as the solution of the BSDE given in (92-93) above. Both are equivalent.

It turns out the BSDE definition lends itself naturally to a generalization where the agent has

source-dependent risk-aversion in that she attaches different risk-aversion to different Brownian

motions.
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B Source-Dependent SDU with Vanishing Risk Aversion to Ex-

pected return shocks

Specifically, consider the case of two vectors of independent Brownian motions Zs, Zx, then we

define the certainty equivalent of our “source-dependent stochastic differential utility” agent who

consumes only at maturity T , as the solution (Ht, σH,s, σH,x) of the following BSDE:

Ht = Et[WT −
∫ T

t
µH(Ht, σH,s, σH,x)dt] (94)

µH = −1

2

U ′′1 (H)

U ′1(H)
||σH,s||2 −

1

2

U ′′2 (H)

U ′2(H)
||σH,x||2 (95)

where two different (twice-differential, strictly increasing and concave) utility functions Ui i = 1, 2

apply to the different sources of diffusion risk.17 Of course, if we pick U1 = U2, then Ht is simply

the standard certainty equivalent of an agent that has expected utility of terminal wealth as shown

in the previous section. Otherwise, we define Ht as the certainty equivalent of an agent that has

source-dependent risk-aversion and applies different risk-aversion to different sources of diffusion

risk.

For CARA utility functions Ui(w) = −e−γiw ∀i = 1, 2, we obtain the following expression for

the BSDE satisfied by the certainty equivalent:

Ht = Et

[
WT −

∫ T

t

{
1

2
γ1||σH,s||2 +

1

2
γ2||σH,x||2

}
du

]
which is equation (7) in the main text with γ1 = γ and γ2 = γx.

For γx 6= γ, this is the certainty equivalent of a source-dependent stochastic differential util-

ity agent as advocated in Skiadas (2008). We also give a recursive heuristic argument for the

construction of this certainty equivalent (following Skiadas (2008)) in the following section.

If we pick γ1 = γ2 = γ, then our derivation in Appendix A implies that Ht is the certainty equiv-

alent of a CARA agent with absolute risk-aversion coefficient γ. That is following the derivation

in the previous section we obtain:

If γ1 = γ2 = γ then Ht = −1

γ
log Et[e

−γWT ]

In general, with Wt dynamics given in (6) above, we look for a solution of the form Ht =

Wt+J(xt, nt, t). Plugging this guess into the BSDE, we find J(xt, nt, t) satisfies (note that this guess

17Following Skiadas (2008) one can also give a heuristic derivation of this recursive utility based on a specific
source-dependent certainty equivalent as in Appendix F.
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also implies that the diffusion of H has two components σH,s = n>t σs + J>x σxs and σH,x = J>x σx):

J(xt, nt, t) = Et

[∫ T

t
{dWu −

1

2
γ1n
>
u σsσ

>
s nudu−

1

2
J>x (γ1σxsσ

>
xs + γ2σxσ

>
x )Jxdu− γ1n>u σsσ>xsJxdu

]
which is, indeed, the objective function we consider in equations (102) and (110) below with

γ1 = γ and γ2 = γx.

Now, we also see that if γ2σx = 0 and σxs = 0, then the certainty equivalent indeed reduces to

the CMV objective function as claimed in Theorem 2, that is (with γ1 = γ):

J(xt, t) = Et

[∫ T

t
dWu −

1

2
γdW 2

u

]

C Recursive Construction of the ‘Source-Dependent’ Stochastic

Differential Utility of Terminal Wealth

Following Skiadas (2008) and Hugonnier, Pelgrin, and St-Amour (2012), we consider a local ap-

proximation argument to show heuristically how to construct recursively the certainty equivalent

Ht of our agent who consumes only at maturity T and has source-dependent risk-aversion. We

assume wealth is driven by two independent Brownian motions Zx, Zs and one Poisson jump Nt

with an arrival intensity of ρ. We allow for a jump to deal with the possible random horizon model.

We also assume that prior to t, the certainty equivalent has dynamics given by:

dHt = µHdt+ σH,sdZ
s + σH,xdZ

x + ηH(dNt − ρdt). (96)

At any time t < T the certainty equivalent is defined by the following recursion

U(Ht, 0, 0, 0) = Et[U(Ht + µHdt, σH,sdZ
s, σH,xdZ

x, ηH(dNt − ρdt))] (97)

with the boundary conditionHT = WT , for some source-dependent risk-aversion function U(z0, z1, z2, z3).

Note that if U(z0, z1, z2, z3) = U(z0 + z1 + z2 + z3) we obtain the same recursive definition as in the

section B. Instead, here we assume the following function:

U(z0, z1, z2, z3) = U1(z0 + z1) +
U ′1(z0)

U ′2(z0)
(U2(z0 + z2)− U2(z0)) +

U ′1(z0)

U ′3(z0)
(U3(z0 + z3)− U3(z0))
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Using this we can rewrite the recursion (97), using the Itô rule for the right-hand side as:

U1(Ht) =U1(Ht) + U ′1(Ht)µHdt+
1

2
U ′′1 (Ht)σ

2
H,sdt+

U ′1(Ht)

U ′2(Ht)

1

2
U ′′2 (Ht)σ

2
H,xdt

− U ′1(Ht)

(
ηH −

U3(Ht + ηH)− U3(Ht)

U ′3(Ht)

)
ρdt

Simplifying and rewriting we obtain the driver µH of the BSDE which defines the source-dependent

SDU:

µH = −1

2

U ′′1 (H)

U ′1(H)
||σH,s||2 −

1

2

U ′′2 (H)

U ′2(H)
||σH,x||2 + ρ

(
ηH −

U3(Ht + ηH)− U3(Ht)

U ′3(Ht)

)
(98)

If we specialize to CARA utility functions Ui(x) = −e−γix, then the BSDE representation

becomes

Ht = Et

[
WT −

∫ T

t

{
1

2
γ1||σH,s||2 +

1

2
γ2||σH,x||2 + ρ(ηH −

1− e−γ3ηH
γ3

)

}]
(99)

When there are no jumps (i.e., ρ = 0) then this is the driver of the BSDE corresponding to

recursive preferences with source-dependent risk aversion that we introduced in (94). The jump

component is useful to understand the stationary case where the horizon is generated by the first

jump of the poisson process.

D Source-dependent SDU with a random horizon

We consider the generalization of our SDU definition where T is generated by the first jump of a

Poisson process with intensity ρ.

Then we define the certainty equivalent as the solution (Ht, σH,s, σH,x, ηH := Wt −Ht−) to the

recursive BSDE defined for t ≤ T :

Ht =Et

[
WT −

∫ T
t

{
1

2
γ1||σH,s||2 +

1

2
γ2||σH,x||2 + ρ

(
Ws −Hs− −

1− e−γ3(Ws−Hs− )

γ3

)}
ds

]
=Wt

+ 1{T>t}Et

[∫ ∞
t

e−ρ(s−t)
{
dWs −

[
1

2
γ1||σH,s||2+

1

2
γ2||σH,x||2+ρ

(
Ws−Hs−−

1−e−γ3(Ws−Hs− )

γ3

)]
ds

}]
(100)

The equality between the first and second line requires an additional transversality condition.18

We prove our first result.

Theorem 10 When γ1 = γ2 = γ3 = γ then the solution to (100) is the certainty equivalent of a

18Note that Et
[∫ T
t
dXu

]
= Et

[∫∞
t
ρe−ρ(s−t)ds

∫ s
t
dXu

]
= Et

[∫∞
t
e−ρ(s−t)dXs − [e−ρ(s−t)(Xs −Xt)]∞t

]
. There-

fore the transversality condition is limT→∞ E[e−ρTXT ] = 0.
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CARA investor with expected utility of terminal wealth generated at the random horizon T . That

is Ht = 1
γ log(Et[e

−γWT ]).

Proof. Note that the solution to (100) when γ1 = γ2 = γ3 = γ is a jump diffusion process, with

the property that HT = WT at the jump time. Therefore we posit the following dynamics for Ht

on T > t:

dHt = µHdt+ σH,sdZ
s + σH,xdZ

x + (Wt −Ht−)(d1{T ≤t} − ρdt) (101)

From the BSDE definition we can see that the drift µH (on τ > t) is given by:

µH =

{
1

2
γ||σH,s||2 +

1

2
γ||σH,x||2 + ρ

(
Ws −Hs− −

1− e−γ(Ws−Hs− )

γ

)}
Applying Itô’s lemma we find U(Ht) = −e−γHt has dynamics:

dU(Ht) ={−1

2
U ′′(H)(||σH,x||2 + ||σH,s||2) + U ′(Ht−)(µH − ρ(Wt −Ht−)}dt

+ U ′(H)σH,sdZ
s + U ′(H)σH,xdZ

x + (U(Wt)− U(Ht−))d1{T ≤t}

=U ′(H)σH,sdZ
s + U ′(H)σH,xdZ

x + (U(Wt)− U(Ht−))(d1{T ≤t} − ρdt)

where we have substituted the expression for µH to get the second equality.

Therefore we find that the solution to the BSDE is such that U(Ht) is martingale, which takes

on the value u(WT ) at T . I follows that at t < T and using the optional stopping theorem:

U(Ht) = Et[U(HT )] = Et[U(WT )]

which is the desired result.

Note that this investor has same risk-aversion to the three types of shocks Zs, Zx, T .

E Finite horizon solution without transaction costs

Without transaction costs (i.e., when Λ = 0), we optimize directly over the number of shares nt as

the wealth-dynamics simplifies and the optimal trading will have infinite variation. We look for a

solution of the form Ht = Wt + J(xt, t), which implies σH,s = n>σs + J>x σxs and σH,x = J>x σx. It

follows from equation (7) that the function J(x, t) must satisfy:

J(xt, t) = max
n

Et

[∫ T

t

{
dWu −

1

2
γn>u Σnudu−

1

2
J>x ΩJxdu− γn>u ΣsxJxdu

}]
(102)
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where we define:

Ω = γσxsσ
>
xs + γxσxσ

>
x (103)

Σsx = σsσ
>
xs (104)

The corresponding Bellman-equation is:

0 = max
n

Et[dWt −
1

2
γn>t Σntdt−

1

2
J>x ΩJxdt− γn>t ΣsxJxdt+ dJ(t, xt)] (105)

Using the definition of the wealth equation (with Λ = 0) we obtain

0 = max
n

{
n>(µ0 + µx)− 1

2
γn>Σn− 1

2
J>x ΩJx − γn>ΣsxJx + Jt − J>x κx+

1

2
Tr(JxxΣx)

}
and we have defined Jx and Jxx as respectively the gradient and hessian of J(x, t) with respect to

x, and Jt the partial derivative with respect to t.

The first order condition, with respect to n, is

n = (γΣ)−1 (µ0 + µx− γΣsxJx)

Plugging back into the HJB equation we get:

0 =
1

2
(µ0 + µx− γΣsxJx)> (γΣ)−1 (µ0 + µx− γΣsxJx)− 1

2
J>x ΩJx + Jt − J>x κx+

1

2
Tr(JxxΣx)

We guess that the value function is of the form:

J(x, t) =c0(t) + c1(t)
>x+

1

2
x>c2(t)x

where c2 is symmetric (w.l.og.) and c0, c1 are all matrices (with appropriate dimensions) of

deterministic functions.

Jt =
.
c0 +

.
c1
>x+

1

2
x>

.
c2x

Jx = c1 + c2x

Jxx = c2

Thus HJB becomes
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− .
c0 −

.
c1
>x− 1

2
x>

.
c2x =

1

2
(µ0 + µx− γΣsx(c1 + c2x))> (γΣ)−1 (µ0 + µx− γΣsx(c1 + c2x))

− 1

2
(c1 + c2x)>Ω(c1 + c2x)− (c1 + c2x)>κx+

1

2
Tr(c2Σx)

This equation is satisfied provided c0, c1, c2 solve the following system:

− .
c0 =

1

2
(µ0 − γΣsxc1)

> (γΣ)−1 (µ0 − γΣsxc1)−
1

2
c>1 Ωc1 +

1

2
Tr(c2Σx) (106)

− .
c1 = (µ− γΣsxc2)

> (γΣ)−1 (µ0 − γΣsxc1)− c>2 Ωc1 − κ>c1
− .
c2 = (µ− γΣsxc2)

> (γΣ)−1 (µ− γΣsxc2)− c>2 Ωc2 − 2c>2 κ

This system has to be solved subject to the boundary condition c0(T ) = 0, c1(T ) = 0 and

c2(T ) = 0 (where 0 is the matrix of zeros with appropriate dimension).

We note that the if µ0 = 0 then c1(t) = 0 and the trading strategy only depends on c2 which

solves an autonomous ODE of the Riccatti type:

− .
c1 = (µ− γΣsxc2)

> (γΣ)−1µ0 − {(µ− γΣsxc2)
>Σ−1Σsx + c>2 Ω + κ>}c1 (107)

− .
c2 = c>2

(
γΣ>sxΣ−1Σsx − Ω

)
c2 + 2c>2 (−κ− ΣsxΣ−1µ) + µ>(γΣ)−1µ (108)

The solution is easily obtained numerically. In terms of the solution the optimal position is

given by:

nt = (γΣ)−1(µ0 + µxt)− Σ−1Σsx(c1(t) + c2(t)x)

where we see that it can be decomposed into the CMVE Markowitz portfolio and a hedging

portfolio (Merton (1973)). In the absence of transaction costs the investor will choose to deviate

from the Markowitz portfolio as soon as Σsx 6= 0.

In particular, we note that the GP investor (who effectively acts as if Σsx = 0 and with γx = 0,

see Remark 3) is myopic in the sense that, absent transaction costs (i.e., if Λ = 0), she would choose

to hold the CMVE instantaneous mean-variance efficient Markowitz portfolio at all times:

CMV Et = (γΣ)−1(µ0 + µxt) (109)

Of course, with transaction costs the optimal portfolio will deviate from the Markowitz port-

folio both for the GP investor and the non-myopic CARA agent. We now turn to the case with

transaction costs.
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F Finite horizon solution with transaction costs

We now consider the case with transaction costs when Λ 6= 0. We look for a solution of the form

Ht = Wt + J(nt, xt, t), which implies σH,s = n>σs + J>x σxs and σH,x = J>x σx. It follows that the

function J(n, x, t) must satifsy:

J(nt, xt, t) = max
θ

Et

[∫ T

t

{
dWu −

1

2
γn>u Σnudu−

1

2
J>x ΩJxdu− γn>u ΣsxJxdu

}]
(110)

where we define:

Ω = γσxsσ
>
xs + γxσxσ

>
x (111)

Σsx = σsσ
>
xs (112)

Thus J(n, x, t) satisfies the HJB equation:

0 = max
θ

Et[dWt −
1

2
γn>t Σntdt−

1

2
J>x ΩJxdt− γn>t ΣsxJxdt+ dJ(t, nt, xt)] (113)

Using the dynamics of the wealth process, we obtain the following equation:

0 = max
θ

{
n>(µ0 + µx)− 1

2
θ>Λθ − 1

2
γn>Σn− 1

2
J>x ΩJx − γn>ΣsxJx + Jt + J>n θ − J>x κx+

1

2
Tr(JxxΣx)

}
and we have defined Jx and Jxx as respectively the gradient and hessian of J(n, x, t) with respect

to x, Jn the gradiant with respect to n, and Jt the partial derivative with respect to t.

The first order condition is

θ = Λ−1Jn

Plugging back into the HJB equation we get:

0 = max
θ

{
n>(µ0 + µx) +

1

2
J>n Λ−1Jn −

1

2
γn>Σn− 1

2
J>x ΩJx − γn>ΣsxJx + Jt − J>x κx+

1

2
Tr(JxxΣx)

}
We guess that the value function is of the form:

J(n, x, t) =− 1

2
n>Q(t)n+ n>(q0(t) + q(t)>x) + c0(t) + c1(t)

>x+
1

2
x>c2(t)x

where Q, c2 are symmetric (w.l.og.) square matrices and q0, q1, c0, c1 are all matrices or vectors

(with appropriate dimensions) of deterministic functions.
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Jt = −1

2
n>

.
Qn+ n>(

.
q0 +

.
q> x) +

.
c0 +

.
c1
>x+

1

2
x>

.
c2x

Jn = −Qn+ q0 + q>x

Jx = qn+ c1 + c2x

Jxx = c2

Thus HJB becomes

0 =− 1

2
n>

.
Qn+ n>(

.
q0 +

.
q> x) +

.
c0 +

.
c1
>x+

1

2
x>

.
c2x

+
1

2
(−Qn+ q0 + q>x)>Λ−1(−Qn+ q0 + q>x) + n>(µ0 + µx)− 1

2
γn>Σn

− 1

2
(qn+ c1 + c>2 x)>Ω(qn+ c1 + c2x)− γn>Σsx(qn+ c1 + c2x)− (qn+ c1 + c2x)>κx+

1

2
Tr(c2Σx)

Rewriting:

0 =
1

2
n>(−

.
Q+QΛ−1Q− γΣ− q>Ωq − 2γΣsxq)n

+ n>(
.
q0 + µ0 −QΛ−1q0 − q>Ωc1 − γΣsxc1) + n>(

.
q> −QΛ−1q> + µ− q>κ− q>Ωc2 − γΣsxc2)x

+ x>(
1

2
.
c2 +

1

2
qΛ−1q> − c2κ−

1

2
c2Ωc2)x

+ x>(
.
c1 + qΛ−1q0 − c2Ωc1 − κ>c1) +

.
c0 +

1

2
q>0 Λ−1q0 −

1

2
c>1 Ωc1 +

1

2
Tr(c2Σx)

So we obtain the set of ODEs that need to be satisfied by the solution.

−
.
Q = γΣ−QΛ−1Q+ q>Ωq + γ(Σsxq + q>Σ>sx) (114)

− .
q> = µ− q>κ−QΛ−1q> − q>Ωc2 − γΣsxc2 (115)

− .
c2 = −(c2κ+ κ>c2) + qΛ−1q> − c2Ωc2 (116)

− .
q0 = µ0 −QΛ−1q0 − q>Ωc1 − γΣsxc1 (117)

− .
c1 = −κ>c1 + qΛ−1q0 − c2Ωc1 (118)

− .
c0 =

1

2
Tr(c2Σx) +

1

2
q>0 Λ−1q0 −

1

2
c>1 Ωc1 (119)

subject to boundary conditions Q(T ) = 0, q(T ) = 0, q0(T ) = 0, c0(T ) = 0, c1(T ) = 0, and

c2(T ) = 0. We note that if µ0 = 0 then c1(t) = 0 and q0(t) = 0, ∀t.
Also, if Ω = 0 (for example in the GP case, where there is no correlation Σxs = 0 and there

is vanishing risk-aversion to Zs risk, that is γx = 0) then the system for Q, q is autonomous and

does not depend on the solution for c2, whereas when there is a hedging demand γx > 0 then the
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system for Q, q, c2 needs to be solved jointly. So c2 encodes the hedging demand component, just

like in the case without transaction costs.

To interpret the optimal trading strategy, note that the value function is maximized with respect

to the position vector n at the optimal aim portfolio:

aim(xt, t) = Q−1(t)(q0(t) + q(t)>xt).

Since Jn = −Qn+ q0 + q>x the optimal trade can be written as:

θ = Λ−1Jn = Λ−1Q(aim(xt, t)− nt)

So with the definition of trade intensity τt = Λ−1Q(t) we get the optimal trading strategy:

dnt = τt(aim(xt, t)− nt)dt (120)

G The finite horizon solution CMV preferences (i.e., σxs = 0 and

γx = 0)

As discussed in Remark 2, the solution to the finite horizon model where agents have CMV pref-

erences (as in equation (10)) corresponds to the solution of the source-dependent risk-aversion

recursive utility agent with parameters restricted to σxs = 0 and γx = 0 (which implies Ω = 0).

To understand the optimal trading rule (aimt, τt) the relevant system of ODE we need to solve

becomes:

−
.
Q = γΣ−QΛ−1Q (121)

− .
q> = µ− q>κ−QΛ−1q> (122)

− .
q0 = µ0 −QΛ−1q0 (123)

Now, we can rewrite this system in terms of the trading speed matrix τ = Λ−1Q as:

− .
τ = γΛ−1Σ− ττ (124)

−
.
Q = γΣ− τ>Q (125)

− .
q> = µ− q>κ− τ>q> (126)

− .
q0 = µ0 − τ>q0 (127)

This system has an intuitive closed-form solution. Let us define the diagonalization γΛ−1Σ =

FDηF
>, where we define Dη as the diagonal matrix with eigenvalue ηi on the ith diagonal. Then

we see that τ = FDhF
> where Dh is the diagonal matrix with the deterministic function hi(t) on

its ith diagonal. Plugging into the ODE for τ we find that the solution separates into n individual
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ODEs for the hi functions, which solve:

−
.
hi = ηi − h2i s.t. hi(T ) = 0 (128)

The solution is as given in the theorem.

It follows that the trading speed matrix is given by τt = FDh(t)F> and the Q matrix is

Q(t) = Λτ(t).

To solve for q(t), q0(t), we use the following lemma:

lemma 1 The following holds:

d

dt
e−

∫ t
0 τ
>
s ds = −τ>t e−

∫ t
0 τ
>
s dsdt = −e−

∫ t
0 τ
>
s dsτ>t dt (129)

Further, ∀t, u, T the following holds:

e−
∫ u
t τ
>
s dse−

∫ T
u τ>s ds = e−

∫ T
t τ>s ds (130)

Proof. Note that
∫ t
0 τ
>
s ds = FD∫ t

0 h(s)ds
F>. Therefore, from the properties of the matrix expo-

nential19 e−
∫ t
0 τ
>
s ds = FD

e−
∫ t
0 h(s)ds

F>. Now, taking the derivative we find:

d

dt
e−

∫ t
0 τ
>
s ds = FD

e−
∫ t
0 h(s)dsh(t)

F> (131)

= FD
e−

∫ t
0 h(s)ds

F>FD−h(t)F
> (132)

= e−
∫ t
0 τ
>
s dsτt (133)

which proves the first equality of the first statement. The second equality of the first statement

follows immediately from using the fact that two diagonal matrices commute in the second line

above.

Now to prove the second statement, we proceed similarly to above and note:

e−
∫ u
t τ
>
s dse−

∫ T
u τ>s ds = FD

e−
∫u
t hsdsF

>FD
e−

∫T
u hsds

F> (134)

= FD
e−

∫T
t hsds

F> (135)

= e−
∫ T
t τ>s ds (136)

Now, we can use this lemma to solve the ODE system. We find:

19The matrix exponential is defined as eX =
∑∞
k=0

Xk

k!
. It follows that if XY = Y X then eX+Y = eXeY . Further,

if Y is invertible then eYXY
−1

= Y eXY −1. Recall that FF> = I.

46



lemma 2 The solution to the ODE system is given as follows;

q(t) =

∫ T

t
e−

∫ u
t τ
>
s dsµe−

∫ u
t κdsdu (137)

q0(t) =

∫ T

t
e−

∫ u
t τ
>
s dsduµ0 (138)

Q(t) =

∫ T

t
e−

∫ u
t τ
>
s dsduγΣ (139)

Proof. We prove only the first results as the other ones are proved similarly. Using lemma 1 we

have:

d

dt
e
∫ t
0 τ
>
s dsq(t)>e

∫ t
0 κds = e

∫ t
0 τ
>
s ds(τ>t q(t)

> +
.

q(t)> + q(t)>κ)e
∫ t
0 κds (140)

= e
∫ t
0 τ
>
s dsµe

∫ t
0 κds (141)

Now integrating and using the boundary condition q(T ) = 0 we find:

e
∫ t
0 τ
>
s dsq(t)>e

∫ t
0 κds = −

∫ T

t
e
∫ u
0 τ>s dsµe

∫ u
0 κdsdu (142)

Now left-multiplying by e
∫ 0
t τ
>
s ds and right-multiplying by e

∫ 0
t κds and using lemma 1 we find the

desired expression.

The main result then follows from the definition of the aim portfolio aim(t, x) = Q(t)−1(q0(t) +

q(t)x).

H The infinite horizon portfolio problem without transaction costs

(Λ = 0)

Without transaction costs (i.e., when Λ = 0), we optimize directly over the number of shares nt as

the wealth-dynamics simplifies and the optimal trading will have infinite variation. Different from

the finite horizon case, we now look for a stationary solution of the form Ht = Wt + J(xt), which

implies σH,s = n>σs + J>x σxs and σH,x = J>x σx. It follows from equation (32) that the function

J(x) must satisfy:

J(xt) = max
n

Et

[∫ ∞
t

e−ρ(u−t)
{
dWu −

1

2
γn>u Σnudu−

1

2
J>x ΩJxdu− γn>u ΣsxJxdu

}]
(143)

The corresponding Bellman-equation is:

0 = max
n

Et[dWt −
1

2
γn>t Σntdt−

1

2
J>x ΩJxdt− γn>t ΣsxJxdt+ dJ(xt)− ρJ(xt)] (144)
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Using the definition of the wealth equation (with Λ = 0) we obtain

ρJ(xt) = max
n

{
n>(µ0 + µx)− 1

2
γn>Σn− 1

2
J>x ΩJx − γn>ΣsxJx − J>x κx+

1

2
Tr(JxxΣx)

}
and we have defined Jx and Jxx as respectively the gradient and hessian of J(x) with respect to x.

The first order condition, with respect to n, is

n = (γΣ)−1 (µ0 + µx− γΣsxJx)

Plugging back into the HJB equation we get:

ρJ =
1

2
(µ0 + µx− γΣsxJx)> (γΣ)−1 (µ0 + µx− γΣsxJx)− 1

2
J>x ΩJx − J>x κx+

1

2
Tr(JxxΣx)

We guess that the value function is of the form:

J(x) =c0 + c>1 x+
1

2
x>c2x

where c2 is symmetric (w.l.og.) and c0, c1 are all matrices (with appropriate dimensions) of

constants.

Jx = c1 + c2x

Jxx = c2

Thus the HJB equation becomes

ρ(c0 + c>1 x+
1

2
x>c2x) =

1

2
(µ0 + µx− γΣsx(c1 + c2x))> (γΣ)−1 (µ0 + µx− γΣsx(c1 + c2x))

− 1

2
(c1 + c2x)>Ω(c1 + c2x)− (c1 + c2x)>κx+

1

2
Tr(c2Σx)

This equation is satisfied provided c0, c1, c2 solve the following system:

ρc0 =
1

2
(µ0 − γΣsxc1)

> (γΣ)−1 (µ0 − γΣsxc1)−
1

2
c>1 Ωc1 +

1

2
Tr(c2Σx) (145)

ρc1 = (µ− γΣsxc2)
> (γΣ)−1 (µ0 − γΣsxc1)− c>2 Ωc1 − κ>c1

ρc2 = (µ− γΣsxc2)
> (γΣ)−1 (µ− γΣsxc2)− c>2 Ωc2 − 2c>2 κ

In addition we require that the transversality condition limT →∞ E[e−ρTJ(XT )] = 0 be satis-
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fied.20

We note that the if µ0 = 0 then c1 = 0 and the trading strategy only depends on c2 which

solves an autonomous ODE of the Riccatti type:

0 = (µ− γΣsxc2)
> (γΣ)−1µ0 − {(µ− γΣsxc2)

>Σ−1Σsx + c>2 Ω + κ> + ρ}c1 (146)

0 = c2

(
γΣ>sxΣ−1Σsx − Ω

)
c2 − c2(ρ+ 2κ+ 2ΣsxΣ−1µ) + µ>(γΣ)−1µ (147)

The solution is easily obtained numerically. In terms of the solution the optimal position is

given by:

nt = (γΣ)−1(µ0 + µxt)− Σ−1Σsx(c1 + c2x)

where we see that it can be decomposed into the CMVE Markowitz portfolio and a hedging

portfolio (Merton (1973)). In the absence of transaction costs the investor will choose to deviate

from the Markowitz portfolio as soon as Σsx 6= 0.

In particular, we note that, as in the finite-horizon case, the GP investor (who effectively acts

as if Σsx = 0 and with γx = 0, see Remark 3) is myopic in the sense that, absent transaction costs

(i.e., if Λ = 0), she would choose to hold the CMVE Markowitz portfolio at all times:

Mwzt = (γΣ)−1(µ0 + µxt) (148)

Of course, with transaction costs the optimal portfolio will deviate from the Markowitz portfolio

both for the GP investor and the non-myopic CARA agent. We now turn to the infinite horizon

case with transaction costs.

I The infinite horizon portfolio problem with transaction costs

(Λ 6= 0)

We now consider the optimal portfolio choice of a source-dependent utility agent with objective

function (32) for the case with transaction costs when Λ 6= 0. We look for a solution of the form

Ht = Wt + J(nt, xt), which implies σH,s = n>σs + J>x σxs and σH,x = J>x σx. It follows that the

20Indeed, suppose there exists a solution to the system of equation that satisfies the transversality condition, then
we have from the definition of the HJB equation that

Et
[
de−ρtJ(xt) + e−ρt{dWt − 1

2
γn>t Σntdt− 1

2
J>x ΩJxdt− γn>t ΣsxJxdt}

]
≤ 0 ∀nt with

equality at the optimal strategy. This implies that J(x0) ≥ E[e−ρTJ(xT )] +

E
[∫ T

0
e−ρt{dWt − 1

2
γn>t Σntdt− 1

2
J>x ΩJxdt− γn>t ΣsxJxdt}dt

]
∀n and with equality for the optimal n. Let-

ting T → ∞ using the bounded convergence theorem and the transversality condition establishes the optimality of
the trading strategy and of the value function.
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function J(n, x) must satifsy:

J(nt, xt) = max
θ

Et

[∫ ∞
t

e−ρ(s−t)
{
dWu −

1

2
γn>u Σnudu−

1

2
J>x ΩJxdu− γn>u ΣsxJxdu

}]
(149)

where we define:

Ω = γσxsσ
>
xs + γxσxσ

>
x (150)

Σsx = σsσ
>
xs (151)

Thus J(n, x) satisfies the HJB equation:

0 = max
θ

Et[dWt −
1

2
γn>t Σntdt−

1

2
J>x ΩJxdt− γn>t ΣsxJxdt+ dJ(nt, xt)− ρJ(nt, xt)dt] (152)

Using the dynamics of the wealth process, we obtain the following equation:

0 = max
θ

{
n>(µ0 + µx)− 1

2
θ>Λθ − 1

2
γn>Σn− 1

2
J>x ΩJx − γn>ΣsxJx + J>n θ − J>x κx+

1

2
Tr(JxxΣx)− ρJ

}
and we have defined Jx and Jxx as respectively the gradient and hessian of J(n, x, t) with respect

to x, and Jn the gradiant with respect to n.

The first order condition is

θ = Λ−1Jn

Plugging back into the HJB equation we get:

0 = max
θ

{
n>(µ0 + µx) +

1

2
J>n Λ−1Jn −

1

2
γn>Σn− 1

2
J>x ΩJx − γn>ΣsxJx − J>x κx+

1

2
Tr(JxxΣx)− ρJ

}
We guess that the value function is of the form:

J(n, x) =− 1

2
n>Qn+ n>(q0 + q>x) + c0 + c>1 x+

1

2
x>c2x

where Q, c2 are symmetric (w.l.o.g.) square matrices and q0, q1, c0, c1 are all matrices or vectors

(with appropriate dimensions) of constant coefficients.

Jn = −Qn+ q0 + q>x

Jx = qn+ c1 + c2x

Jxx = c2
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Thus HJB becomes

0 =− ρ(
1

2
n>Qn− n>(q0 + q> x)− c0 − c1>x−

1

2
x>c2x)

+
1

2
(−Qn+ q0 + q>x)>Λ−1(−Qn+ q0 + q>x) + n>(µ0 + µx)− 1

2
γn>Σn

− 1

2
(qn+ c1 + c>2 x)>Ω(qn+ c1 + c2x)− γn>Σsx(qn+ c1 + c2x)− (qn+ c1 + c2x)>κx+

1

2
Tr(c2Σx)

Rewriting:

0 =
1

2
n>(−ρQ+QΛ−1Q− γΣ− q>Ωq − 2γΣsxq)n

+ n>(ρq0 + µ0 −QΛ−1q0 − q>Ωc1 − γΣsxc1) + n>(ρq> −QΛ−1q> + µ− q>κ− q>Ωc2 − γΣsxc2)x

+ x>(
1

2
ρc2 +

1

2
qΛ−1q> − c2κ−

1

2
c2Ωc2)x

+ x>(ρc1 + qΛ−1q0 − c2Ωc1 − κ>c1) + ρc0 +
1

2
q>0 Λ−1q0 −

1

2
c>1 Ωc1 +

1

2
Tr(c2Σx)

So we obtain the set of ODEs that need to be satisfied by the solution.

ρQ = γΣ−QΛ−1Q+ q>Ωq + γ(Σsxq + q>Σ>sx) (153)

ρq> = µ− q>κ−QΛ−1q> − q>Ωc2 − γΣsxc2 (154)

ρc2 = −(c2κ+ κ>c2) + qΛ−1q> − c2Ωc2 (155)

ρc0 =
1

2
Tr(c2Σx) +

1

2
q>0 Λ−1q0 −

1

2
c>1 Ωc1 (156)

ρq0 = µ0 −QΛ−1q0 − q>Ωc1 − γΣsxc1 (157)

ρc1 = −κ>c1 + qΛ−1q0 − c2Ωc1 (158)

We note that if µ0 = 0 then c1 = 0 and q0 = 0. Also, if Ω = 0 (for example in the GP case,

where there is no correlation Σxs = 0 and there is vanishing risk-aversion to x risk, that is γx = 0)

then the system for Q, q is autonomous and does not depend on the solution for c2, whereas when

there is a hedging demand γx > 0 then the system for Q, q, c2 needs to be solved jointly. So c2

encodes the hedging demand component, just like in the case without transaction costs.

To interpret the optimal trading strategy, note that the value function is maximized with

respect to the position vector n at the optimal aim portfolio aim(xt) = Q−1(q0 + q>xt). Since

Jn = −Qn+ q0 + q>x the optimal trade can be written as:

θ = Λ−1Jn = Λ−1Q(aim(xt)− nt)
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So with the definition of fixed trade intensity τ = Λ−1Q we get the optimal trading strategy:

dnt = τ(aim(xt)− nt)dt (159)

J The one asset one factor case

Here we analyze the solution for the simple special case of one-factor and one asset, that is

N = K = 1. We further set µ0 = 0.

J.1 The infinite horizon no-transaction-cost case

We note that the if µ0 = 0 then c1 = 0 and the trading strategy only depends on c2 which solves

the quadratic equation:

0 = c2

(
γΣ>sxΣ−1Σsx − Ω

)
c2 − c2(ρ+ 2κ+ 2ΣsxΣ−1µ) + µ>(γΣ)−1µ (160)

Recall that Ω = γσ2xs + γxσ
2
x and Σsx = σsσxs and Σ = σ2s . Thus the equation simplifies:

0 = c22γxσ
2
x − c2(ρ+ 2κ+ 2

σxs
σs

µ) +
µ2

γσ2s
(161)

The solution is given in the main paper.

J.2 The infinite horizon with tcost

We note that the if µ0 = 0 then c1 = q0 = 0 and the trading strategy only depends on c2, Q, q

which solve the equations:

ρQ = γΣ−QΛ−1Q+ q>Ωq + 2γΣsxq (162)

ρq> = µ− q>κ−QΛ−1q> − q>Ωc2 − γΣsxc2 (163)

ρc2 = −2c2κ+ qΛ−1q> − c2Ωc2 (164)

Recall that Ω = γσ2xs + γxσ
2
x and Σsx = σsσxs and Σ = σ2s . Thus the equations simplify:

ρQ = γΣ−QΛ−1Q+ q2Ω + 2γΣsxq (165)

0 = µ− q(κ+ ρ)−QΛ−1q − qΩc2 − γΣsxc2 (166)

0 = −(ρ+ 2κ)c2 + q2Λ−1 − c22Ω (167)
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We now express everything in terms of the trading speed: τ = Λ−1Q to get:

τ2 + ρτ = γΛ−1Σ + q2Λ−1Ω + 2γΛ−1Σsxq (168)

0 = µ− q(κ+ ρ)− τq − qΩc2 − γΣsxc2 (169)

0 = (ρ+ 2κ)c2 − q2Λ−1 + c22Ω (170)

To solve this problem, we see that the first equation has a unique positive root for τ(q) and the

last equation has a unique positive root c2(q), both given by:

τ(q) =
−ρ+

√
ρ2 + 4Λ−1(q2γxσ2x + γ(σs + qσxs)2)

2
(171)

c2(q) =
−(ρ+ 2κ) +

√
(ρ+ 2κ)2 + 4Λ−1q2(γσ2xs + γxσ2x)

2Ω
(172)

The solution is then found by solving the second equation for q.

q(κ+ ρ) + τ(q)q + (qγxσ
2
x + γσxs(qσxs + σs))c2(q) = µ (173)

It is clear that this equation always admits a positive solution (since the left hand side is a continuous

function equal to zero when q = 0 and tending to infinity as q →∞).

The optimal aim portfolio is given by

aim(x) = Q−1qx (174)

= τ−1Λ−1q (175)

(176)

K The infinite horizon solution CMV preferences (i.e., σxs = 0 and

γx = 0)

As discussed in Remark 2, the solution to the finite horizon model where agents have CMV pref-

erences (as in equation (34)) corresponds to the solution of the source-dependent risk-aversion

recursive utility agent with parameters restricted to σxs = 0 and γx = 0 (which implies Ω = 0).

To understand the optimal trading rule (aim, τ) the relevant system of ODE we need to solve

becomes:

ρQ = γΣ−QΛ−1Q (177)

ρq> = µ− q>κ−QΛ−1q> (178)

ρq0 = µ0 −QΛ−1q0 (179)
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Now, we can rewrite this system in terms of the trading speed matrix τ = Λ−1Q as:

ρτ = γΛ−1Σ− ττ (180)

ρQ = γΣ− τ>Q (181)

ρq> = µ− q>κ− τ>q> (182)

ρq0 = µ0 − τ>q0 (183)

This system has an intuitive closed-form solution. Let us define the diagonalization γΛ−1Σ =

FDηF
>, where we define Dη as the diagonal matrix with eigenvalue ηi on the ith diagonal. Then

we see that τt = FDhF
> where hi are the positive root of the quadratic equation:

ρhi = ηi − h2i (184)

The solution is:

hi =
1

2
(
√
ρ2 + 4ηi − ρ)

It follows that the trading speed matrix is given by τ = FDhF
> and the the Q matrix is Q = Λτ .

To solve for q, q0, we note that they can be expressed directly in terms of the trading speed and

using lemma 3 for the expression for q

Q = (ρ+ τ>)−1γΣ (185)

q0 = (ρ+ τ>)−1µ0 (186)

q> =

∫ ∞
0

e−(ρ+τ
>)tµe−κtdt (187)

lemma 3 Suppose A,B are (full rank) square matrices with strictly positive eigenvalues. Then the

matrix equation −AX −XB = −C has the solution X =
∫∞
0 e−AtCe−Btdt.

Proof. Note that:

e−ATCe−BT − C =

∫ T

0
d(e−AtCe−Bt) = −A

∫ T

0
e−AtCe−Btdt−

∫ T

0
e−AtCe−BtdtB

Taking the limit as T →∞ and noting that, since all the eigenvalues of A,B are positive we have

limT→∞ e
−ATCe−BT = 0, we obtain: −C = −AX −XC where X is as defined in the lemma.

The main result then follows from the definition of the aim portfolio aim(x) = Q−1(q0 + qx).
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