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1 Introduction

A common practice in the academic finance literature has been to create characteristic

portfolios (CPs) by sorting on characteristics positively associated with expected returns.

The resulting set of zero-investment CPs, which go long a portfolio of high characteristic

firms and short a portfolio of low characteristic firms, then serve as a model for returns in

that asset space. Fama and French (1993, 2015) are prominent examples of this approach,

but there are numerous others, developed both to explain the equity market anomalies, and

also the cross-section of returns in other asset classes.1

Consistent with this, Fama and French (2015, FF) argue that a standard dividend-discount

model implies that a combination of firm characteristics based on valuation, profitability and

investment should forecast firms’ average returns. Based on this they develop a five factor

model—consisting of the MktRF, SMB, HML, RMW, and CMA characteristic portfolios—

and argue that this model does well in explaining the cross-section of average excess returns

for a variety of test portfolios, based on a set of time-series regressions like:

rp,t = αp + bp,mrMktRF,t + bp,HMLrHML,t + bp,SMBrSMB,t

+bp,CMArCMA,t + bp,RMW rRMW,t + εp,t (1)

SMB, HML, RMW, and CMA are characteristic portfolios, formed by sorting on various

combinations of firm size, valuation ratios, profitability and investment respectively. Fama

and French (1993, 2015) refer to these characteristic portfolios as “mimicking portfolios” or

“factors”.2

Standard projection theory shows that the intercepts (αs) from these regressions will all be

zero for all test assets if and only if the mean variance efficient (MVE) portfolio is in the span

1Examples are: UMD (Carhart, 1997); LIQ (Pastor and Stambaugh, 2003); BAB (Frazzini and Pedersen,
2014); QMJ (Asness, Frazzini, and Pedersen, 2019); PMU (Novy-Marx, 2013); ISU (Daniel and Titman,
2006) and RX and HML-FX (Lustig, Roussanov, and Verdelhan, 2011). We concentrate on the factors of
Fama and French (2015). However, the critique we develop in Section 2 applies to any factors constructed
using this method.

2As emphasized by Cochrane (2005, p.174), the word “factor” is used with different meanings in the
asset pricing literature. In this paper we use “characteristic portfolio” to refer to a zero-investment portfolio
formed on the basis of one or more firm characteristics. We use the term “factor” to refer to a latent
economic force (see, e.g., equation (2)) but not the return on an investment portfolio. Fama and French
(1996, p.57) refer to these latent economic forces as risk factors or “state variables of special hedging concern
to investors.”
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of the CPs, or equivalently, if the maximum Sharpe ratio in the economy is the maximum

Sharpe ratio achievable with the CPs alone. Despite several critiques of this methodology,

it remains popular in the finance literature.

This paper is concerned with the standard procedure employed when constructing these

CPs. We show that, if characteristics are a good proxy for expected returns, then forming

CPs by sorting on characteristics alone will generally not explain the cross-section of returns

in the way proposed in the literature. The argument is based on the early insights of

Markowitz (1952) and Roll (1977). Suppose a set of characteristics are positively associated

with expected returns, and a corresponding set of long-short CPs are constructed by buying

high characteristic stocks and shorting low characteristic stocks. This set of portfolios will

explain the returns of portfolios sorted on the same characteristics, but are unlikely to span

the mean variance efficient frontier of all assets, because they do not take into account the

asset covariance structure.

A simple example with a single characteristic and a single priced factor helps to illustrate

this intuition (we describe this example in detail in Section 2.1). Consider an economy with

N assets and let µµµ be the N ×1 vector of expected excess returns on these assets. Premia are

driven by exposure to a single risk factor, which is unobserved. Assume finally that there is

a linear relation between expected excess returns and a single characteristic, that is, µµµ = xxxλc,
where xxx is the corresponding N × 1 vector of stock characteristics and λc is some constant.

Researchers are interested in identifying the underlying risk factor. To do so they construct

a CP, a zero investment portfolio that goes long high characteristic stocks and short low

characteristic stocks. Since the CP earns a large excess return, it must also have a large

exposure to the risk factor. Further, the literature effectively argues that exposure to the

CP should price the cross-section, in the spirit of regressions like the one in equation (1). Of

course, this will only be the case if the resulting CP is mean variance efficient.

We show that, in general, this standard procedure will not produce a mean variance efficient

portfolio. The reason is that, while variation in the characteristic does indeed pick up

variation in the loading with respect to the priced risk factor, it also captures variation in

the loadings with respect to unpriced sources of common variation in returns. As a result,

exposure to the CP commands premium but the volatility of returns is too high because

the portfolio also loads on these unpriced sources of common variation. It follows that the

Sharpe ratio of the CP is lower than the Sharpe ratio of the projection of the risk factor on
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the space of returns: the CP is not mean-variance efficient. We show how to improve on the

CP by removing from it unpriced sources of common variation in returns.

We extend these ideas to the empirically relevant case where average excess returns are ex-

plained by many characteristics, such as size, book-to-market, profitability, and investment.

We introduce the concept of a characteristic efficient portfolio (CEP), which has the smallest

return variance amongst the portfolios that has characteristic equal to one for one charac-

teristic and zero to all other characteristics. We further show that the complete set of CEPs

spans the mean variance frontier.

The CEPs are the solution to an optimization problem that takes into account the covariance

matrix of returns. Were the covariance matrix known, the calculation of the CEP weights

would be straightforward. However, there are numerous problems associated with using

an estimated covariance matrix to construct portfolios and no accepted way of correcting

a sample covariance matrix to fully resolve the problems associated with optimal portfolio

construction.3 We instead develop an empirically feasible strategy to get close to the CEPs.

Our starting point is a set of CPs—in our empirical implementation we start with the five

FF CPs. We then introduce the concept of a hedge portfolio: a characteristic balanced

portfolio designed to pick up variation in the loadings with respect to unpriced sources of

common variation in returns, and with zero loading on the priced factors. Characteristic

balanced here means that the long- and the short-side of the hedge portfolio have identical

characteristics, and therefore according to our characteristic model, also have zero expected

return. In our theory section, we show how to select the optimal hedge portfolio: It is the

characteristic balanced portfolio that maximizes the loading with respect to the CP. Finally

we show how an optimal combination of the original CPs and the optimal hedge portfolios

delivers the CEPs.

Based on this theoretical development, we construct hedge portfolios for each of the five

FF CPs. There are two key empirical challenges: the construction of the optimal hedge

portfolios, and the calculation of the optimal hedge ratios. For the construction of the optimal

hedge portfolios we build on Daniel and Titman (1997), but improve on their procedure on

multiple dimensions. Through the use of higher frequency data and differential windows for

calculating volatilities and correlations, we are able to construct hedge portfolios that are

3Black and Litterman (1991) describe this problem and a suggest shrinking the expected return estimates
toward an equilibrium-based prior as a partial solution. Ledoit and Wolf (2003, 2004a,b, 2012, 2017) each
propose alternative covariance matrix estimators.
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highly correlated with the FF CPs, but which have approximately zero expected returns.

Importantly, like the FF CPs themselves, our hedge portfolios are highly tradable: we form

value-weighted portfolios once per year, at the end of June, and hold their composition fixed

for 12 months. Based on robustness considerations, we also calculate the hedge ratios only

once per year, also at the end of June, and based only on data that are in the investor’s

information set at that time. Thus our procedure is out-of-sample in the sense that, given

knowledge of the five FF characteristics, an investor could have hedged the FF portfolios in

exactly the way we do here.

Empirically, our hedge portfolios behave in a way that is consistent with our theory: except

for the size (SMB) hedge portfolio, they all earn economically and statistically significant

five-factor alphas.4 We combine each of the original five FF CPs with our hedge portfolios

in an ex-ante optimal way, i.e., we forecast the optimal hedge ratio, and generate the five

FF CEPs. The optimal combination of the five CEPs yields a squared Sharpe ratio of 2.16

versus 1.16 for the optimal combination of the five FF CPs.

Our procedure has the important advantage that it does not require us to identify the

sources of unpriced risk. In fact, we are completely agnostic as to what these unpriced

sources of common variation in returns represent. We do argue, though, that one source

of unpriced common variation may be industry exposure, and present evidence that the

standard FF CPs load on industry returns. We compare the performance of the characteristic

efficient FF portfolios with the performance of a strategy in which we only hedge out the

industry component of the original five FF CPs. The squared Sharpe ratio of the ex-post

optimal combination of the industry-neutral five FF CPs is 1.37, which is lower than what we

obtain with our methodology, 2.16: There are unpriced sources of common variation beyond

industry and thus the industry-neutral CPs do not span the MVE portfolio.

Our results are important for several reasons. First, they increase the hurdle for standard

asset pricing models. Following the logic of Hansen and Jagannathan (1991), the pricing

kernel variance that is required to explain the returns of our CEPs is 86% higher than what

is required to explain the returns of the FF CPs.

Second, in order to find economic explanations for the premia associated with characteristics

such as size and value, it is important to start out with portfolios that capture the factor

4 Note that over this sample period, the SMB characteristic portfolio has the lowest Sharpe ratio of the
five FF CPs.

5



premia with the minimum possible return variance. In the context of rational models, recall

that the ultimate purpose behind this literature is to find the underlying risk factors that

are the source of premia. As FF (page 3) suggest, building on the ICAPM logic of Merton

(1973), “. . . the factors are just diversified portfolios that provide different combinations of

exposures to the unknown state variables” driving the marginal rate of substitution of the

marginal investor. CPs then should correlate with proxies for the marginal utility of the

representative investor. But if, by construction, as we argue, these CPs load on unpriced

sources of common variation this correlation with the marginal rate of substitution is bound

to be biased towards zero and thus may lead to the wrong inferences regarding the suitability

of the proposed asset pricing model.5

Third, our CEPs are better benchmarks for the performance evaluation of managed port-

folios. While the characteristics approach to measure managed portfolio performance (see,

e.g., Daniel, Grinblatt, Titman, and Wermers, 1997, DGTW) has gained popularity, the

regression based approach initially employed by Jensen (1968) (and later by Carhart (1997),

Fama and French (2010) and numerous others) remains the more popular. A good reason for

this is that the characteristics approach can only be used to estimate the alpha of a portfolio

when the holdings of the managed portfolio are known, and frequently sampled. In contrast,

the Jensen-style regression approach can be used in the absence of holdings data, as long as

time series of portfolio returns are available.

However, as pointed out originally by Roll (1977), the regression approach requires that

the benchmark used in the regression test be efficient; otherwise the conclusions of the

regression test will be invalid. What we show in this paper is that, with the historical return

data, efficiency of the proposed CPs can be rejected. However, our CEPs incorporate the

information both from the characteristics and from the historical covariance structure and

thus improve on their FF counterparts. Thus, if the CEPs are used as benchmarks and

loadings can be estimated accurately, alphas equivalent to what would be obtained with the

DGTW characteristics-approach can be generated with the regression approach without the

need for portfolio holdings data.

5We thank our discussant, Ralph Koijen, for emphasizing this point to us. Indeed, a recent literature
studies the connection between characteristic premia and risk. See Lewellen, Nagel, and Shanken (2010),
and Daniel and Titman (2012) for summaries of the literature. One example is the study by Golubov and
Konstantinidi (2019), which focuses on the value premium.
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Finally, our paper connects to the recent vintage of papers that revisits the question of how

to combine characteristics into tradable portfolios (see Gu, Kelly, and Xiu, 2018; Huang,

Li, and Zhou, 2018; Freyberger, Neuhierl, and Weber, 2018; Kozak, Nagel, and Santosh,

2019; Liu, Tsyvinski, and Wu, 2019). These papers all take as their starting point a set of

characteristics that explain average excess returns. Our focus instead is on improving the

efficiency of the characteristic portfolios by using individual asset loadings on the CPs. Our

work also connects to another set of papers which identify the priced components of book-to-

market CPs (see Gerakos and Linnainmaa, 2018; Golubov and Konstantinidi, 2019), but our

point is much broader and refers to the general procedure used to construct characteristic

portfolios.

2 Theory and examples

Fama and French (1993) and numerous subsequent studies construct characteristic portfolios

as a proxy for the priced risk associated with characteristic premia.6 These papers construct

a zero-investment CP by going long a unit-investment portfolio of high characteristic assets,

and short a unit-investment portfolio of low characteristic assets (where average returns are

positively correlated with the characteristic). Then, each paper proceeds to examine whether

the returns of a set of test assets are explained by a combination of well-known benchmark

portfolios and the new CP, often using regressions like the one in equation (1). The implicit

argument here is that the such a characteristic portfolio, in combination with the other

benchmark portfolios, will span the mean variance efficient portfolio.

This paper makes two contributions. We first show that the standard characteristic portfolio

construction procedure is unlikely to yield the mean variance efficient (MVE) portfolio,

because the so-constructed CP will load on unpriced risk. Second, we show how to improve

on this standard procedure by constructing a hedge portfolio which captures the unpriced

risk in the CP.

To illustrate, we start with a simple example. The example makes two key assumptions:

excess returns are described by a two-factor structure and expected excess returns are linear

in a single characteristic. Section 2.1.2 further illustrates our results in the context of the

popular HML portfolio. Section 2.2 generalizes the simple example to the empirically relevant

6See footnote 1 for examples.
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case in which multiple characteristics are needed to fully describe the cross-section of average

excess returns.

2.1 A simple example

2.1.1 Characteristic portfolios and mean variance efficiency

We consider a single period economy with N assets. Realized excess returns are determined

by a two-factor structure, so for asset i:

ri = βi (f + λ) + γig + εi, (2)

where E[f] = E[g] = E[εi] = 0 for all i = 1,2,⋯,N . Further, suppose that var (f) = σ2
f ,

var (g) = σ2
g , var (εi) = σ2

ε for all i = 1,2,⋯,N , and that f , g, and εi are mutually orthogonal

for all i ≠ j.

Let rrr denote the (N × 1) column vector of individual excess returns,

rrr⊺ ≡ [r1 r2 ⋯ rN] ,

where ⊺ denotes transpose. Taking expectations of equation (2) gives:

µµµ ≡ E [rrr] = βββλ, (3)

where βββ is the (N × 1) column vector of individual assets’ exposures to f .

The standard interpretation of f is that it is a proxy for shocks to the marginal rate of

substitution; the two canonical examples are that f is (some function of) consumption

growth or that (f + λ) is the return on the market portfolio (Cochrane, 2005, page 78). g is

the unpriced source of common variation. That there is only one factor that is the source

of premia is without loss of generality: For any factor structure there is always a rotation

of the factor space in which there is only one priced factor. Accurately determining f is

important in assessing macroeconomic theories. Its projection onto the space of returns has

the maximal Sharpe ratio, so financial economists attempt to identify f by constructing

portfolios with the highest possible Sharpe ratios.
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Studies in this literature begin with the observation that expected excess returns in the

cross-section are a function of a set of characteristics. For instance, Fama and French (1993,

page 4), state that “two empirically determined variables, size and book-to-market equity, do

a good job explaining the cross-section of average returns on NYSE, Amex, and NASDAQ

stocks for the 1963-1990 period,” and then build the characteristic portfolios SMB and HML

based on the these characteristics.

We follow the literature but go a step further. We assume that expected excess returns are

perfectly described by a linear function of characteristics. To make this example as simple as

possible we assume that expected excess returns are described by a single characteristic, xxx,

an N × 1 column vector and that this characteristic lines up perfectly with expected excess

returns,

µµµ = xxxλc, (4)

where λc is the characteristic premium.

In order for equations (3) and (4) to hold simultaneously, it must be the case that:

βββ = (λc
λ

)xxx (5)

In this simple setting the characteristic is a perfect proxy for the exposure to the priced

factor. Thus, sorting on the characteristic will pick up variation in β. This is the motivation

for the standard procedure in the literature, first developed in Fama and French (1993),

of constructing a zero investment portfolio that goes long stocks with a high value of the

characteristic x and short stocks with low value of the characteristic.

A portfolio is defined by an N -dimensional column vector of portfolio weights,

www⊺ ≡ [w1 w2 ⋯ wN] , (6)

where wi is asset i’s weight in the portfolio for i = 1,2,⋯,N .

To continue, suppose that there are only six stocks (N = 6) with equal market capitaliza-

tions. The six stocks have characteristics and loadings on the priced and unpriced factors as

illustrated in Figure 1. Notice that assets 1 and 2 have identical loadings and characteristics.

The same holds for assets 5 and 6.
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Figure 1: Six assets in the space of loadings on priced and unpriced factors.

We now construct a specific characteristic portfolio, or CP, which we label c, on the basis

of characteristic x, by going long a value-weighted portfolio of the high characteristic stocks

A1, A2, and A3, and short a value-weighted portfolio of the low characteristic stocks A4, A5,

and A6.7 Specifically, the weights on individual stocks in the characteristic portfolio c are

given by:

www⊺

c = [1

3

1

3

1

3
− 1

3
− 1

3
− 1

3
] , (7)

and the return of portfolio c is:

rc =www⊺

crrr =
1

3
× [

3

∑
j=1

rj −
6

∑
j=4

rj] = 2(f + λ) + 2

3
g + 1

3
[

3

∑
j=1

εj −
6

∑
j=4

εj] . (8)

The CP’s return rc does indeed capture the common source of variation in expected excess

returns, since it loads on f . However, our point here is that CPs so constructed are likely to

also load on unpriced factors, and will therefore not be mean-variance efficient. This is the

case in this example: because of the cross-sectional correlation between the characteristic

and the loading on the unpriced factor—i.e., the fact that most high characteristic firms also

have a high loading on the unpriced factor—the constructed CP also loads on the unpriced

7 Because in this simple example all stocks have equal weight there is no difference between equal and
value weighting. The usual Fama-French construction uses value-weighted portfolios.
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source of common variation g. 8 Specifically, the CP loads on the factor f with βc = 2 and on

g with γc = 2
3 . The value of the characteristic for this portfolio is xc = 2 λ

λc
and thus expected

excess return is E [rc] = 2λ. The variance of the returns is given by

σ2
c = 4σ2

f +
4

9
σ2
g +

2

3
σ2
ε , (9)

giving the CP a Sharpe ratio of

SRc =
2λ

√
4σ2

f +
4
9σ

2
g + 2

3σ
2
ε

. (10)

If σ2
ε is small relative to the variance of the systematic factors f and g, then it is clear that

the CP is not MVE because it is exposed to both priced and unpriced risk. In this example

then a single characteristic lines up perfectly with expected excess returns and still the CP

fails to deliver the mean variance efficient portfolio. Can we improve on the CP?

Consider the following portfolio h with weights:

www⊺

h = [−1

4
− 1

4

1

2
− 1

2

1

4

1

4
] . (11)

This portfolio goes long stocks with low loadings on g and short stocks with high loadings

on g. The return of portfolio h is given by

rh =
1

2
[r3 +

r5

2
+ r6

2
] − 1

2
[r1

2
+ r2

2
+ r4] = −2g + 1

2
[ε3 +

ε5

2
+ ε6

2
] − 1

2
[ε1

2
+ ε2

2
+ ε4] .

The loading of the h portfolio on g is γh = −2. Notice that this portfolio is characteristic

balanced in that xh =www⊺

hxxx = 0, so βh = 0 and E [rh] = 0 (see (4)).

We can use the portfolio h to improve on the CP by reducing its variance without changing

its expected excess returns. For this reason we refer to h as a hedge portfolio. Indeed,

given that the characteristic and hedge portfolios have loadings on g of γc = 2
3 and γh = −2,

respectively, we can form a portfolio for which for every dollar invested long in portfolio c

we also invest $1
3 (long) in the hedge portfolio h. This combined portfolio has the same

8 Note that a cross-sectional correlation between the characteristic and the loading on the unpriced factor
of exactly zero constitutes the knife-edge case, i.e., it is extremely unlikely.
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expected return as the CP (which is 2λ) but its exposure to g is eliminated. The variance

of this portfolio is

4σ2
f +

3

4
σ2
ε (12)

and thus it has a Sharpe ratio of
2λ

√
4σ2

f +
3
4σ

2
ε

, (13)

which is higher than the Sharpe ratio of the CP, SRc (see equation (10)), whenever diversi-

fication is large enough so that idiosyncratic risk vanishes.9

We can do better by combining the hedge portfolio with the characteristic portfolio in order

to maximize the Sharpe ratio. Given that the hedge portfolio has zero expected excess return

this is equivalent to finding the combination of the characteristic portfolio and the hedge

portfolio that minimizes the variance of the resulting portfolio, that is,

min
δ

var (rc + δrh) ⇒ δ∗ = ρc,h
σc
σh
, (14)

where σh is the standard deviation of the returns of the hedge portfolio, h, and ρc,h is the

correlation coefficient between the returns of the characteristic portfolio, c, and the hedge

portfolio, h. We refer to δ∗ as the optimal hedge ratio. It can be shown that this procedure

improves the Sharpe ratio of the characteristic portfolio by

SR’

SRc
= 1

√
1 − ρ2

c,h

, (15)

where SR’ is the Sharpe ratio of the improved characteristic portfolio.

Notice that there are several ways of constructing the hedge portfolio h so as to remove

exposure to g from the characteristic portfolio c. Equation (15) shows though that the

optimal hedge portfolio is the one that is maximally correlated with the CP. In Section 2.2

we extend these insights to the empirically relevant case in which a full description of the

cross-section of expected excess returns requires multiple characteristics. Before showing

these result formally, we illustrate the ideas of the example in the context of a popular

characteristic portfolio, the HML portfolio of Fama and French (1993).

9 For a well-diversified portfolio for which residual variance is zero, this problem is the same as setting
the loading on the unpriced factor to zero; with residual risk it is not. In this example the Sharpe ratio is
higher as long as σ2

g > (
3
16
)σ2

ε .
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2.1.2 The simple example in practice: Industry portfolios as g

Book-to-market is one characteristic that has been shown to align with average returns

in the cross-section and HML is a popular characteristic portfolio.10 Asness, Porter, and

Stevens (2000), Cohen and Polk (1995) and others11 have shown that if book-to-market

ratios are decomposed into an across-industry component and a within-industry component,

then only the within-industry component—that is, the difference between a firm’s book-to-

market ratio and the book-to-market ratio of its corresponding industry portfolio—forecasts

future returns. This literature then suggests that the exposure of HML to industry returns

is unpriced, that is, that industry is one unpriced source of common variation, g. Therefore,

if the industry exposure of HML was hedged out, it would result in a characteristic portfolio

with lower risk, but the same expected return, i.e., with a higher Sharpe ratio. But, does

HML really load on industries?

Figure 2 plots the R2 from 126-day rolling regressions of daily HML returns on the twelve

daily Fama and French (1997) value-weighted industry excess returns. The time period is

1963/07 - 2019/06.12 The plot shows that, while there are short periods where the realized

R2 dips below 50%, there are also several periods where it exceeds 90%. The R2 fluctuates

considerably but the average is well above 70%. The upper Panel of Figure 3 plots, for the

same set of daily, 126-day rolling regressions, the regression coefficients for each of the 12

industries. As it is apparent, these coefficients display considerable variation: sometimes the

HML portfolio loads more heavily on some industries than on others.

The behavior of the ‘Money’ industry during and after the Great Recession of 2008 is a

striking example of the large industry effect on HML. The lower Panel of Figure 3 shows

that the regression coefficient associated with ‘Money’ increased dramatically between 2007

and early 2009, as stock prices for firms in this segment collapsed and those firms quickly

became classified as value.13 As shown in Figure 4, the volatility of returns also increased

dramatically. As a result of these two effects, ‘Money’ explained a substantial amount of the

10Fama and French (1993, 2015) refer to HML as well as to the other portfolios, as factors or factor
portfolios. We instead use the expression characteristic portfolios throughout, in order to further distinguish
between the underlying factor, f , and the portfolio formed on characteristic sorts.

11 See also Lewellen (1999), Cohen, Polk, and Vuolteenaho (2003), and Golubov and Konstantinidi (2019).
12 The industry classification follows Ken French’s data library at http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/Data_Library.
13As shown in Laeven and Huizinga (2009) banks during the crisis used accounting discretion to avoid

writing down the value of distressed assets. As a result the value of bank equity was overstated. The market
knew better and as a result the book-to-market ratio of bank stocks shot up during the crisis.

13

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library.
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library.


variation of HML returns during those years. Indeed Figure 5 plots the R2 of a regression of

the return on HML on the ‘Money’ industry excess returns alone. Between late 2008 and late

2010, the R2 was well above 60%. The reason for this was that as of December 2007, the top

4 firms by market capitalization in the ‘Money’ industry were J.P. Morgan, Bank of America,

Citigroup and Wells Fargo. Three of these four were in the large value portfolio portfolio

(Big/High-BEME to use the standard terminology). While the market capitalization of these

firms fell dramatically through 2008, they remained large and, particularly as the volatility

of the returns on the ‘Money’ industry increased, these firms and others like them drove the

returns both of the HML portfolio and the ‘Money’ industry portfolio.

However, there were firms in the ‘Money’ industry that did not have high book-to-market

ratios, even in the depths of the financial crisis. For example, in 2008 American Express

(AXP) and UnitedHealth Group (UNH) were both “L” (low book-to-market) firms. Yet

both AXP and UNH had large positive loadings on HML at this point in time (see Table 1).

The reason is that, at this time, both AXP and UNH covaried strongly with the returns on

the ‘Money’ industry, as did HML. We can exploit this variation within the ‘Money’ industry

to construct a characteristic balanced hedge portfolio wwwh as illustrated in the example in the

previous section. The short side of the characteristic balanced portfolio features firms with

high loadings on HML and low and high book-to-market, such as American Express and

Citi, respectively. Loosely speaking, in the example in Figure 1, Citi would be like A1 (i.e., a

value stock in the finance industry), and American Express would be like asset A4 (a growth

stock in the finance industry). The characteristic balanced hedge portfolio goes long both

value and growth stocks with low loadings on HML, and goes short value and growth firms

with high loadings, such as Citi and Amex.14

2.2 The general case

We now show that the insights of the previous section extend to the more general case in

which there are multiple factors and characteristics that drive excess returns.

As in the example in Section 2.1, we consider a single period economy with a large number

of assets N but in which now realized excess returns are determined by a factor structure

14 By maximizing the negative loading on HML, subject to the constraint that the the portfolio be book-
to-market neutral, we pick up the unpriced part of the HML-exposure. In this simple example the unpriced
component of HML is money-industry return.
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in which the number of factors is K. Recall that for any multifactor representation there is

always a rotation with only one priced factor f and a vector of (K − 1) unpriced factors ggg.

We can then write realized excess returns as

ri = βi (f + λ) + γγγiggg + εi, (16)

where E[f] = E[gk] = E[εi] = 0 for all k = 1,2,⋯,K − 1 and i = 1,2,⋯,N . Further, suppose

that var (f) = σ2
f , var (ggg) = Σg, cov (f,ggg) = 000, cov (εi, f) = 0, cov (εi,ggg) = 000 for i = 1,2,⋯,N

and cov (εi, εj) = 0 for all i ≠ j. γγγi is the (1 × (K − 1)) vector of asset i’s exposure to the

unpriced factors ggg.

As before we assume that there is a linear relation between expected excess returns and

characteristics

µµµ =Xλλλc, (A1)

where µµµ is again an (N × 1) vector of expected excess returns, X is now an (N ×M) matrix

of characteristics, and λλλc is an (M × 1) vector of characteristic premia.

Assumption (A1) is consistent with model (16) as long as

βββ = 1

λ
Xλλλc, (17)

where βββ is an (N × 1) vector of loadings on f . Thus, under assumption (A1), asset i’s

exposure to f is a linear combination of the M characteristics that describe expected excess

returns.

This setting captures, in somewhat simplified form, the current state of the asset pricing

literature, where a set of characteristics explains average returns. The asset pricing tests

in the literature (e.g., Fama and French, 1993, 2015) construct a set of CPs, one for each

of the characteristics that are shown to capture variation in average excess returns in the

cross-section, and then examine whether the cross-section of returns is explained by the CPs’

returns, for example using time-series regressions like that in equation (1). The hope is that

the projection of f on the space of returns (the MVE portfolio) will be in the span of those

CPs. If this were the case, then the factor model with the CPs as factors would be a valid

multi-factor asset pricing model. We now examine when, for CPs constructed in this way,

the MVE portfolio will indeed be in the span of the CPs.
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Our starting point is the set of M CPs, one for each characteristic. The (N × 1) vector of

weights for the m-th CP, wwwc,m, will have positive values for firms with a high value of the

m-th characteristic, and negative values for firms with a negative characteristic. The return

of the m-th CP is then:

rc,m ≡www⊺

c,mrrr for m = 1,2,⋯,M. (18)

We further define the (N ×M) matrix of CP weights as:

Wc = [wwwc,1 wwwc,2 ⋯ wwwc,m] . (19)

This paper is concerned with, first, whether the CPs span the MVE frontier, and, second, if

they do not, whether and how we can improve on the CPs. A key concept in what follows

is that of characteristic efficient portfolios or CEPs.

Definition 2.1 (Characteristic efficient portfolios) The weight-vector of the m−th charac-

teristic efficient portfolio is the solution to the program

min
wwwc,m

www⊺

c,mΣwwwc,m subject to www⊺

c,mX = eeem. (Pm)

In program (Pm), Σ is the (N×N) return covariance matrix and eeem is an (M×1) vector with

the m−th entry equal to 1 and all others equal to 0. Intuitively the m−th CEP selects among

the portfolios that have the m−th characteristic equal to one and all other characteristics

equal to zero, the one with the minimum variance possible.

Our main results are that, first, the M CEPs span the mean variance efficient frontier

and, second, that the asset loadings with respect to CEPs line up perfectly with asset

characteristics. Finally we show how to adjust any set of CPs to transform them into CEPs.

2.2.1 Characteristic efficient portfolios

As shown in the Appendix B.1, the solution to program (Pm) is

www∗

c,m = Σ−1X (X⊺Σ−1X)−1
eeem. (20)
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Let

W ∗

c ≡ [www∗

c,1 www∗

c,2 ⋯ www∗

c,M] = Σ−1X (X⊺Σ−1X)−1
, (21)

be the (N ×M) matrix of CEP weights.

Let B∗, an (N ×M) matrix, be the projection coefficient of rrr on rrr∗c , where each column

bbb∗m corresponds to the vector of individual stocks’ loadings on the m-th CEP, that is, B∗ ≡
[bbb∗1 bbb∗2 ⋯ bbb∗M]. Armed with this we can prove the following:

Proposition 2.2 Under assumption (A1)

1. The returns of the CEPs span the mean-variance-efficient portfolio, that is,

SR∗2 = µµµ∗⊺c Σ∗−1
c µµµ∗c = µµµ⊺Σ−1µµµ (22)

where

µµµ∗c ≡W ∗⊺

c µµµ = λλλc and Σ∗

c ≡ var (W ∗⊺

c rrr) = (X⊺Σ−1X)−1
. (23)

2. Asset loadings with respect to the CEPs line up with the characteristics

B∗ =X (24)

Proof: See Appendix B.2. 2

Proposition 2.2 says that given (A1), there is an optimal way of constructing portfolios linked

to the characteristics so that they span the mean variance efficient frontier. One property of

these portfolios is that the loadings of any test portfolio on the CEPs will equal the vector of

portfolio characteristics for that test portfolio. That is, if the portfolios are the CEPs there

is no distinction between characteristics and covariances.

Notice that any rotation of the CEPs, Ŵ ∗

c = W ∗

c A where A is (M ×M) and full rank, will

also span the MVE portfolio of excess returns. But for any such rotation the loadings will

no longer be the corresponding characteristic but a linear combination of them.15

15That the loadings are a linear function of the characteristics follows from the fact that the loadings with
respect to any rotation of the CEPs are given by

B̂∗
= ΣW ∗

c A (A
⊺W ∗⊺

c ΣW ∗

c A)
−1

=X (A⊺
)
−1
,

where the last equality uses (21).
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We are interested in constructing CEPs rather than CPs. However, Σ is difficult to estimate,

which may justify the implicit choice in the literature to use simple characteristic sorting

procedures to construct CPs, but in general these CPs will not span the same space as the

CEPs.

There is though a particular case of interest in which the CPs span the mean variance

efficient frontier. It is when K = M , that is, when the number of characteristics equals

the number of factors that explain the covariance matrix. In this case, adding the hedge

portfolios would not increase the maximum Sharpe ratio achievable with the CPs. Our view

though is that this case is of limited practical interest. The number of factors that capture

common variation in stock returns is likely large (at least the number of industries!) whereas

the number of characteristics that have been found to explain the cross-section of expected

excess returns is smaller. In particular, it is easy to show that as long as K >>M and the

characteristics are correlated with the loadings on the unpriced factors γγγ in the cross-section,

the CPs will not span the MVE portfolio. We proceed next by showing how to recover CEPs

from the CPs.

2.2.2 Characteristic portfolios and hedge portfolios

Our starting point is a set of CPs, for example the five portfolios in Fama and French (2015).

Let B, an (N ×M) matrix, be the matrix of projection coefficients of rrr on rrrc, where each

column bbbm corresponds to the vector of loadings of individual assets on the m-th CP, that

is, B ≡ [bbb1 bbb2 ⋯ bbbM]. The empirical counterpart of B is a matrix of a multivariate time

series regression coefficients of each asset’s excess return on rrrc.

We show next that there exists a set of optimal hedge portfolios, with weights given by the

columns of the (N ×M) matrix W ∗

h , that can be combined with the original CPs to obtain

(a rotation of) the CEPs. That is,

W ∗

c A =Wc −W ∗

h∆∗, (25)

where A is an (M ×M) rotation matrix, and ∆∗ is an (M ×M) matrix of optimal hedge

ratios.
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Definition 2.3 (Optimal hedge portfolio) The weight-vector of the m−th characteristic hedge

portfolio is the solution to the program

max
wwwh,m

www⊺

h,mbbbm subject to www⊺

h,mX = 000 and
1

2
www⊺

h,mΣwwwh,m = σ2 (Ph,m)

Program (Ph,m) delivers a portfolio weight-vector www∗

h,m so as to maximize the correlation of

the returns of the hedge portfolio, rh,m ≡ www∗⊺

h,mrrr, with the returns of the corresponding CP,

rc,m, conditional on having zero characteristic exposure. Define

W ∗

h = [www∗

h,1 www∗

h,2 ⋯ www∗

h,M] .

Proposition 2.4

1. The weights of the optimal hedge portfolios are given by

W ∗

h = (Wc −W ∗

c X
⊺Wc)Σ−1

c E
−1 (26)

where E is an (M ×M) diagonal matrix specified in the Appendix B.3 and W ∗

c is given

by (21).

2. A and ∆∗ in expression (25) are given by

A =X⊺Wc and ∆∗ = EΣc (27)

Proof: See Appendix B.3 2

To understand the intuition of Proposition 2.4 start by noticing that W ∗

c A is a rotation of

the CEPs’ weights such that these rotated CEPs have the same characteristic as the original

CPs. The corresponding optimal hedge portfolios have zero expected excess returns,

Errrh = 0 where rrrh =W ∗⊺

h rrr (28)
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Finally, there is the interpretation of the optimal hedge ratios. A bit of algebra, reported in

the Appendix B.4, shows that16

∆∗ = Σ−1
h W

∗⊺

h ΣWc, (29)

that is, for each CP, the optimal hedge ratios are the coefficients of a multivariate regression

of its return rc,m on the returns of all the optimal hedge portfolios. The intuition of this

result is straightforward. The hedge portfolios command zero premia, but their returns are

correlated with rrrc. Hence, the optimal hedge ratios are such that the return of the CEP is

orthogonal to rrrh. That is, consistent with exactly the intuition in the example in Section 2.1,

each CEP is the residual from a projection of the CP on the set of hedge portfolios, meaning

that each CEP is equal to the corresponding CP, orthogonalized to the set of hedge portfolios.

In sum, the optimal hedge portfolios do not remove any of the premia from the CPs but

remove sources of variation that do not command any premium. In other words, each of

the optimal hedge portfolios has zero expected excess return, and hence zero loading on the

priced risk factor f . The only reason that the optimal hedge portfolios load on the CPs is

because they all load on the unpriced risk factors.17 All optimal hedge portfolios together

then form a basis for the unpriced components in the CPs and can be used to hedge out all

the exposure to unpriced risk factors. This is the source of the improvement in the Sharpe

ratio when going from CPs to CEPs.

An important implication of this analysis is that whenever we have a set of characteristics

that explain expected excess returns, we can always find a set of portfolios that span the

MVE portfolio. These portfolios lack economic content and thus so do the loadings with

respect to those portfolios, which are simply the characteristics (see Proposition 2.2). These

CEPs though can help in discriminating amongst alternative economic models: if a particular

economic variable is uncorrelated with the CEPs, then it cannot be a candidate for a state

variable that drives the marginal rate of substitution of the marginal investor. But the

validity of such an inference depends on using the CEPs rather than the CPs; the correlation

of an economic variable with a CP could result from a correlation of the variable with the

priced factor, or with the unpriced factors on which the CP loads.

16The reason why we write ∆∗, rather than ∆, is because, as it was the case in the example (see (14)),
the optimal hedge ratios are the solution of an optimization problem that results in an optimal combination
of the CPs and the optimal hedge portfolios.

17We assume that N is large enough and we can ignore idiosyncratic risk.
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3 Empirical results

3.1 Hedge portfolio construction

Recall that our starting point is any given set of CPs on which we want to improve. To do

so our methodology involves two steps. First, we construct the hedge portfolios. Second we

find the optimal hedge ratios.

In our empirical exercise, we focus on the FF five-factor model and we follow these authors

in the construction of their CPs. The empirical goal is to construct the best possible hedge

portfolios, as introduced in (Ph,m). The empirical procedure to construct the hedge portfolios

builds on Daniel and Titman (1997). The idea is to use ex-ante forecasts for the loadings

for each stock i on the returns of the CPs, rc,m, in order to construct hedge portfolios with

maximum loadings on the CPs. At the same time, these hedge portfolios are constructed in

such a way that they have characteristics as close as possible to zero.

More precisely, our empirical approach is based on the first order conditions of the pro-

gram (Ph,m). We show in the Appendix B.3 that the weights of each optimal hedge portfolio

are given by

www∗

h,m = 1

κ2,m

Σ−1 (bbbm −Xκκκ⊺1,m) , (30)

the m−th column of Wh in (26). In (30) κκκ1,m, which is (1×M), and κ2,m > 0 are the Lagrange

multipliers associated with the first and second constraints in program (Ph,m).

Roughly, equation (30) says, holding fixed the characteristics, the hedge portfolio goes long

stocks with high loadings and short stocks with low loadings with respect to the CP. Intu-

itively, one can think about stocks’ loadings with respect to the CPs as a combination of

exposure to priced and unpriced risk. When we control for the characteristics, we control

for cross-sectional variation in the exposure to the CEPs, the sole source of variation in pre-

mia. Thus, holding characteristics constant, sorting on CP loadings captures the remaining

variation: the one with respect to the unpriced sources of common variation.

Empirically, we construct the optimal hedge portfolios by sorting individual stocks into

characteristic bins and then within each bin sort again on the forecast loading with respect

to a particular CP. We form the portfolio with maximum negative loading, as in Daniel and
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Titman (1997), rather than what is prescribed in equation (30). This is without any effect

on the interpretation of the results.

There are two challenges in constructing optimal hedge portfolios. First, our theory requires

that we control for all characteristics. Roughly, within each characteristic bin stocks have

the same characteristic values. But if there are, for example, five characteristics and we sort

stocks into three bins for each of them, this would result in 243 portfolios. Some of these

portfolios would surely contain very few stocks and thus would not be sufficiently diversified.

It turns out that, empirically, controlling for size and one additional characteristic at a time

is enough to deliver hedge portfolios that have close to zero exposure to all characteristics,

while obtaining well-diversified portfolios. We return to this issue when we discuss the

characteristic properties of the hedge portfolios.

Second, notice that construction of the optimal hedge portfolios requires use of the full

covariance matrix (Σ; see equation (30)). We instead construct an approximation to the

optimal hedge portfolio by, for a set of firms with roughly equal characteristics, going long

a value-weighted portfolio of stocks with low loadings and short a value-weighted portfolio

of stocks with high loadings with respect to the CPs. This results in a hedge portfolio

that we can combine with the CPs to get close to the CEPs. Indeed, because we are not

using the theoretically optimal hedge portfolios we cannot exactly recover the CEPs from

Definition 2.1. We still refer to these “approximate CEPs” as CEPs in order to avoid

the need to introduce additional terminology. Finally, value-weighting stocks in each of

the portfolios sorted on characteristics and loadings guarantees that our portfolios do not

overweight small stocks; this avoids the inherent difficulties in trading small stocks because

of a lack of liquidity.

We describe next the exact procedure to construct the hedge portfolios based on the example

of HML. We first calculate book-to-market (BEME) and market capitalization (ME) break

points at the marks of 33.3% and 66.7% based on NYSE firms. For BEME we use data from

the end of December of the previous year and for ME we use data from the end of June of

each year. Then, at the end of June of a given year, all NYSE, AMEX and NASDAQ stocks

are placed into one of the nine resulting bins. Next, within these nine bins, each of the stocks

is sorted into one of three additional bins formed based on the stocks’ forecast future loading

on the HML CP. This last sort results in portfolios of stocks with similar characteristics
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(BEME and ME) but different loadings on HML.18 The firms remain in those portfolios

between July and June of the following year. Finally, we construct our hedge portfolio for

HML by going long a combination of all low loading portfolios and short a combination of

all high loading portfolios, where each portfolio receives a weight of 1
9 .

The hedge portfolios for RMW and CMA are constructed in exactly the same way, simply

by replacing BEME with operating profitability (OP) and investment (INV). For SMB, we

follow FF and construct three different hedge portfolios: the first sorts are based on BEME

and ME, and then within these 3x3 bins, we conditionally sort on the loading on SMB. The

second and third versions use OP and INV instead of BEME in the first sort. Then, an equal

weighted portfolio of the three different SMB hedge portfolios is used as the hedge portfolio

for SMB. We do exactly the same for the hedge portfolio for the market (MktRF), using

forecast loadings on MktRF instead of forecast loadings on SMB.

Clearly a key ingredient of the last step of the sorting procedure is the estimation of the future

loading on the corresponding characteristic portfolio. Our purpose is to obtain forecasts of

loadings in the five-factor FF model:19

ri,t = αp + bi,MktRF rMktRF,t + bi,HMLrHML,t + bi,SMBrSMB,t

+ bi,CMArCMA,t + bi,RMW rRMW,t + εp,t
(31)

For each stock, we instrument future loadings with pre-formation loading forecasts. The

resulting estimation method is intuitive and is close to the method proposed by Frazzini and

Pedersen (2014) to estimate individual-firm market loadings. These authors build on the

observation that correlations are more persistent than variances20 and propose estimating

correlations and variances separately. They then combine these estimates to produce the

pre-formation loadings. Specifically, correlations are estimated using a five-year window with

overlapping log-return observations aggregated over three trading days, to account for non-

synchronicity of trading. Variances of characteristic portfolios and stocks are estimated on

daily log-returns over a one-year horizon. Furthermore, we introduce an additional intercept

in the pre-formation regressions for returns in the six months preceding portfolio formation,

18A potential concern with independently triple-sorted portfolios is sparse portfolio population. The
number of traded firms has varied substantially over time, reaching a “listing peak” in 1996 when it started
declining (see Doidge, Karolyi, and Stulz, 2017). We show in Appendix D.1 that even in periods of relatively
few listed firms, the resulting portfolios are sufficiently diversified.

19We write, say, rHML,t instead of rc,BEME,t to simplify the notation.
20See, e.g., De Santis and Gerard (1997)
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i.e., from January to June of the rank-year (see Figure 1 in Daniel and Titman (1997)

for an illustration). Further, we use constant-allocation and constant-weight pre-formation

characteristic portfolio returns, as in Daniel and Titman (1997).21

The accuracy of loading forecast impacts the efficacy of the hedge portfolios. Intuitively, if

our forecasts of future loadings are very noisy, then sorting on the basis of forecast loadings

will not capture variation in the actual post-formation loadings of the sorted portfolios. In

contrast, if the forecasts are accurate, then our hedge portfolio—which goes long the low-

forecast-loading portfolio and short the high-forecast-loading portfolio—will indeed have

very negative loading with respect to the corresponding FF CP. Notice that this relates to

statistical power of rejecting the benchmark asset pricing model. Under the null hypothesis,

αs are equal to zero for all stocks. Given our theory, the alternative hypothesis is that the

hedge portfolios have zero expected returns and strong negative loadings, which translates

into large positive αs. The more negative the ex-port loadings, the higher is the power of

the test designed to reject the null hypothesis that the benchmark model is true. We show

in the Appendix D.2 that using a low power methodology that follows Daniel and Titman

(1997) and Davis, Fama, and French (2000) leads to different results than the ones presented

in the next section. Indeed, with hedge portfolios constructed using the low power method

we are not able to reject the FF five-factor model.

3.2 Description of the sorted portfolios

Table 2 presents average monthly excess returns for the portfolios sorted on characteristics

and forecast-loadings, which we combine to form our hedge portfolios. Each panel presents a

set of sorts with respect to size and one characteristic—either book-to-market, profitability

or investment—and the loading on HML (Panel A), RMW (Panel B), CMA (Panel C),

MktRF (Panels D-F), or SMB (Panels G-I).

For each of the 27 portfolios in each subpanel, we report value-weighted monthly excess

returns. The column labeled “Avg.” gives the average across the 9 portfolios for a given

characteristic. First, note that the average returns in the “Avg.” column are consistent with

empirical regularities well-known in the literature: the average returns of value portfolios

21See Appendix C.2 for details.
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are higher than those of growth, historically robust profitability firms beat weak profitability

firms, and historically conservative investment firms beat aggressive investment firms.

In Table 3 we present the post-formation loadings and αs. These are the coefficients from

regressing the monthly excess returns of the BEME/OP/INV×ME×loading sorted portfolios

on the excess returns of the five FF CPs, in the sample period from 1963/07 to 2019/06.

We see that there are large differences between the post-formation loadings of the low-

forecast-loading (“1”) and high-forecast-loading (“3”) portfolios For the value, profitability,

and investment sorts, the average post-formation differences in loading of the “3” and “1”

portfolios are 0.79, 0.69, and 0.96 respectively. Given these large differences in loadings, it is

remarkable that the difference in the average monthly returns for the high- and low-loading

portfolios are 8, 6, and -4 basis points per month for the value, profitability and investment-

loading sorts, respectively (see the last rows, labeled “Avg.” of Panels A-C in Table 2).22

This is consistent with the Daniel and Titman (1997) conjecture that average returns are a

function of characteristics, and are unrelated to the loadings on the FF-CPs after controlling

for the characteristics.

In Figures 6, 7 and 8 we analyze the average characteristics of the sorted portfolios. Each dot

in these plots represents one of the 27 portfolios from the 3×3×3, BEME/OP/INV×ME×loading

sort. The dotted lines connect all portfolios within the same BEME/OP/INV×ME bucket.

The x-axis is the respective post-formation loading and the y-axis the average characteristic

value. Figure 6 shows the portfolios sorted on HML loadings (Panel A), the portfolios sorted

on RMW loadings (Panel B) and the portfolios sorted on CMA loadings (Panel C). Figure

7 shows portfolios that form the market hedge portfolio and Figure 8 shows portfolios that

form the SMB hedge portfolio.

Ideally, all the dotted lines in Figures 6, 7 and 8 should be horizontal straight line. This

would mean that, within each characteristic bucket, forecast loadings were uncorrelated with

any characteristic. However, our method uses coarse characteristic sorts and therefore we do

not expect the characteristics of the high and low loading portfolios to be identical. Rather,

we expect that the loading with respect to the CP will be correlated with the characteristic

used to construct it. For example, bHML is correlated with BEME in the cross-section. This

correlation translates into differences in the average characteristics of the low b and the high

b portfolios. Last, we do not control for the two other characteristics, when sorting on a

22 For comparison, the average excess returns of the HML, RMW, and CMA portfolios over the same
period are 31, 27, and 22 bp/month, respectively.
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particular loading. For example, when we form BEME×ME×bHML sorted portfolios, we do

not control for OP or INV. To the extent that OP and/or INV are cross-sectionally correlated

with bHML, we might also pick up variation in those characteristics.

One way to assess the magnitude of the deviation of our sorted portfolios from the ideal

“characteristic balanced” case, is to compare the spread in characteristics within and across

characteristic buckets. The former constitutes the vertical distance between red and green

dots, that are connected with a dotted line, which we call the “unintended characteristic

spread”. The latter is the vertical distance across the dotted lines for the cases where

the characteristic on the y-axis corresponds to the one used to form the CP (i.e. HML

with BEME, RMW with OP, and CMA with INV). This is the “intended spread” in the

characteristic between high and low characteristic portfolios used to form the CP. This gives

us an idea of the magnitude of a large spread in the characteristic.

As one can see from the figures, in general, the unintended spreads are relatively small,

compared to the intended spreads. For example, in the case of portfolios sorted on bhml, the

unintended BEME spread within characteristic buckets is at most about 0.24 (among the

small-value stocks). When we compare that to the intended spread in BEME between small

value and small growth stocks, which amounts to 1.13, we can conclude that the unintended

spread is relatively small.

We view these results as evidence that even a sorting procedure as simple and coarse as

ours does a reasonable job in forming hedge portfolios that are close to being characteristic

balanced. Furthermore, the small observed return differences presented in Table 2 may be

related to the characteristic spread observed above. In fact, our theory predicts that the

characteristic spreads across low loading and high loading portfolios should relate to the

expected returns in the hedge portfolios. For example, among the firms in the small-cap,

low BEME bucket in Panel A of Figure 6, there is considerable variation in OP. This could

partially explain the 19 bp difference in returns between the high and low bHML portfolios,

as documented in the top row in Panel A of Table 2.

Finally, from Figures 6, 7 and 8 we can also see that we forecast future loadings quite

well. Ideally, the low forecast loading stocks also have a low post-formation loading on the

CPs. Therefore, the red dots should always be the farthest to the left, whereas the green

dots (the high forecast loading stocks) should end up to the right of those, within each

characteristic bucket. Indeed we observe this pattern for all portfolios. Moreover, the spread
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between the red and the green dots, within a given characteristic bucket, should be as large

as possible. Indeed the spread generated here is far bigger, as compared to, e.g., the one

that is generated using a loading forecast methodology following Daniel and Titman (1997)

or Davis et al. (2000).23

3.3 Pricing results

In this subsection we describe the two key empirical results of this paper. First, we show

that we can reject the FF five-factor model using the hedge portfolios as test assets. Second

we show how to improve the Sharpe ratios of the FF CPs by combining them optimally with

the hedge portfolios. We argue that such CEPs have a better chance of spanning the mean

variance efficient frontier than the standard CPs proposed in the literature.

3.3.1 Pricing the hedge portfolios

We run a single time series regression of the monthly excess returns of the hedge portfolios

rh,m, m ∈ {HML,RMW,CMA,SMB,MktRF}, on the excess returns of the five FF CPs.

Table 4 reports the average excess returns, alphas and loadings as well as the corresponding

t−statistics.

Two attributes are important to determine the ability of the hedge portfolios in hedging

unpriced risk: They must have zero expected excess returns and have large negative loadings

with respect to the corresponding CP.

We first assess the hedge portfolios’ expected excess returns. Column “Avg” in Table 4

reports the monthly average excess returns of all hedge portfolios. Ideally, all of these num-

bers should be exactly zero. For all 5 hedge portfolios, average excess returns are slightly

negative but statistically indistinguishable from zero. This result mirrors the fact that the

hedge portfolios have close to zero characteristic exposures. The fact that the excess returns

are all slightly negative, albeit insignificantly so, reflects the earlier insight, that character-

istics and corresponding loadings are inherently cross-sectionally correlated. A coarse sort

(such as 3 buckets) is thus always at risk of picking up some variation in the corresponding

23We present evidence on this in Appendix D.2.
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characteristic. Hence, going long low (short high) loading stocks mechanically also tends to

slightly tilt towards low (high) characteristic values, as pointed out in Section 3.2.

We then turn to the hedge portfolios’ ability to hedge out unpriced risk by looking at their

post-formation loading on their corresponding CP. As expected, each hedge portfolio exhibits

a strong significantly negative loading on their corresponding CP. For example, the hedge

portfolio for HML has a loading on HML of −0.79 with a t−statistic of −27.8.

This directly translates into pricing implications, as indicated by the alphas. The five FF

CPs fail to price four out of five long-short hedge portfolios, three of them (MktRF, RMW,

and CMA) at a significance level of 5%.24 The last lines of the Table constructs equal-

weight combinations of these portfolios. The alphas for all of them are strongly statistically

significant. For instance, when we consider the equal-weight combination of four hedge

portfolios (the ones corresponding to HML, RMW, CMA and MktRF), the monthly alpha

is 0.18 with a t-statistic of 5.93.

3.3.2 Ex-ante determination of the optimal hedge-ratio

Having studied the hedge portfolios, the next step is to construct characteristic efficient

portfolios, i.e.,

r∗c,m,t = rc,m,t − rrrh,tδ̂δδm,t−1 (32)

where m ∈ {HML,RMW,CMA,SMB,MktRF}.25

The optimal hedge ratio δ̂δδm,t−1 is determined ex-ante, in the spirit of equation (14). We

employ the same loading forecast techniques as described before to forecast loadings, i.e.,

we first calculate five years of constant-weight and constant-allocation pre-formation returns

of rc,m,t and rh,t. We then calculate correlations over the whole five years of 3-day over-

lapping return observations and variances by utilizing only the most recent 12 months of

daily observations. Note that this is done in a multi-variate framework, i.e., we consider the

covariance of each CP with all five hedge portfolios, to account for the correlation structure

24 The only one for which the FF model cannot be rejected, even at the 10% level, is the SMB hedge
portfolio. The fact that the FF model succeeds in pricing the SMB hedge portfolio is consistent with the
notion that there is little to price there, as we know that the size premium has historically been relatively
weak.

25To be consistent with our notation, the returns of, for example, the HML portfolio at time t should be
denoted by rc,BEME,t. We simplify the notation by calling it rHML,t.
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among the hedge portfolios. Consequently, both δ̂δδm,t−1 and rrrh,t are M−dimensional vectors,

where M = 5 in the case of the FF model examined here. Note further, that the returns

of the CEPs r∗m,t are (approximately) orthogonal to the returns of the hedge portfolios rrrh,t.

The reason why they are only approximately orthogonal is because the δ̂δδm,t−1 is estimated

ex-ante, i.e., up to t − 1.

3.3.3 Characteristic efficient Fama and French portfolios

The first column of Table 5 reports key statistics on the returns of each of the CPs (rc):

the annualized average returns in percentages, the annualized volatility of returns and the

squared annualized Sharpe ratio. The second column reports the same three quantities for

the CEPs, r∗c . These portfolios are constructed exactly as in expression (32).

When we move from rc,m to r∗c,m, we see that the mean return of all characteristic portfolios

decreases, but that the volatility decreases substantially more. This leads to an increase in

the Sharpe ratio for each of the individual Fama and French CPs. For example, the squared

Sharpe ratio of the improved version of CMA is 0.29, where the squared Sharpe ratio of the

original CMA is 0.16.

The right-side panel of Table 5 presents p-values for the differences in means based on a

t-test, and for the volatilities using a Levene (1961) test for equality of variances. To test for

differences in Sharpe-Ratios, we use a test based on Jensen (1968)’s alpha. Specifically, to

assess whether the portfolio performance increases when we move from the CP to the CEP,

we run a time-series regression of the returns of the CEP on the CP, and obtain a p-value for

the regression intercept. Consistent with the interpretation of Jensen (1968) we are testing

whether there is a statistically significant performance differential between the CP and the

CEP.

While the result that we improve on each characteristic portfolio individually is promising,

the ultimate goal of the exercise was to construct a set of portfolios that gets closer to

spanning the mean variance efficient portfolio, as compared to the CPs. Hence, in the

second-to-last panel of Table 5, we compute the in-sample optimal combination of both the

original FF CPs (column rc,m) and the CEPs (r∗c,m). The maximum achievable squared

Sharpe ratio with FF CPs in the sample period covered in this paper (1963/07 - 2019/06)

is 1.16. The squared Sharpe ratio of the optimal combination of the CEPs is instead 2.16.
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Notice that each individual CEP is perfectly tradable, as all information used to construct

them is known to an investor ex-ante. Only the weights of optimal combinations of the

five CPs as well as CEPs, as reported in the bottom panel of Table 5, are calculated in-

sample. Additionally, we want to emphasize that the way we construct our portfolios is very

conservative, in that we only rebalance once every year—in order to be consistent with the

rules of the game set by Fama and French.

We reiterate that our empirical approach does not in general deliver the theoretical CEPs.

Computation of the optimal hedge portfolios (see equation (30)) and optimal hedge ratios

(described in equation (29)) requires knowledge of Σ, which is difficult to estimate, as well

as of the post-formation loadings. Nevertheless, the CEPs deliver a large improvement over

the CPs. Moreover, our empirical method is robust and, at same time, delivers tradable

hedge portfolios.

3.3.4 Redundancy of HML

FF find that HML is redundant, in that it is spanned by the other CPs. Table 6 shows

that we can replicate this result based on our extended sample. The weight of HML in the

ex-post optimal combination, based on Markowitz optimization, is -1.0 % when we use the

original FF CPs (column rc). However, if we use the CEPs (column r∗c ), the weight on HML

increases to 8.0 %, close to the weight on MktRF .

We can confirm this result by running spanning regressions in Table 7. The return of HML,

rHML is indeed spanned by the other four CPs (column 1). It is similarly subsumed by the

other four CEPs (column 2). The return of the CEP version of HML, r∗HML (column 3),

is not fully spanned by the returns of the other four FF CPs: removing unpriced sources

of variation from HML makes it an unspanned portfolio, relative to the other four original

FF CPs. The alpha of a regression of the HML CEP on the other CEPs has a t-statistic of

1.53. We can thus reject redundancy of HML∗ at the 10% significance level.

An important additional empirical finding is that the correlation betweenHML∗ andRMW ∗

is now strongly negative, −.52, whereas it was positive but very small for HML and RMW ,

.09 (see Table 8). This fact suggests that both CPs, HML and RMW , load on an unpriced

source of common variation. The implication is that an investor can capture the premium
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associated with exposure to HML∗ and RMW ∗ while lowering the total variance of the

portfolio.

3.4 Industry-neutral characteristic portfolios

In Section 2.1.2, we argued that industry was one potential source of common variation that

was likely to be unpriced. Since we know that there are periods in which the FF CPs strongly

load on industry portfolios, a natural exercise is to construct CPs that are industry-neutral.

In this section, we construct industry-neutral versions of CPs and compare their performance

with the performance of the CEPs constructed in this paper.

To construct industry-neutral CPs we ex-ante hedge any exposure to the 12 FF industries

out of the FF CPs, except for the market.26 Define the returns of the industry-neutral

portfolio, rc−ind,m,t, as:

rc−ind,m,t = rc,m,t − rrrind,tδ̂̂δ̂δindc,m,t−1 (33)

where m ∈ {HML,RMW,CMA,SMB,MktRF}, rrrind,t is a (1 × 12) vector with excess

returns of all 12 industries, δδδindc,m,t−1 is the ex-ante optimal industry hedge-ratio. Analogous

to the previous exercises, δδδindc,m,t−1 is estimated every June 30th, using correlations over the

previous five years of 3-day overlapping return observations and variances by using only the

most recent 12 months of daily observations.27

Table 5 reports the mean, volatility and squared Sharpe ratios for all rc−ind,m and the in-

sample optimal combination of the industry-neutral characteristic portfolios. Hedging out

industry risk leads to an improvement in the squared Shape ratio for HML, CMA and

SMB, consistent with the hypothesis that it is generally unpriced risk. However, the CEPs

outperform the industry-hedged CPs in the case of RMW and CMA, i.e., the use of our hedge

portfolio results in a greater Sharpe ratio improvement than simply hedging out industry

exposure. In contrast, for HML the industry-neutral version has a higher Sharpe ratio than

CEP. A possible explanation is that, in theory, unlike our procedure, the industry-hedging

can change the characteristic of the resulting portfolio and as a consequence the exposure to

the priced factor. Recall that our CEPs have the same characteristics as the CPs, but lower

26The market is a linear combination of all industries and thus, hedging out industries from the market
using the method described is not feasible.

27We also employ constant-weight, constant-allocation (as of June 30th) pre-formation returns of the
factor- and industry-portfolios.
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variance and therefore a higher squared Sharpe ratio. Instead, industry-neutral portfolios do

not need to have the same characteristic as the original CPs and our theory does not have

a prediction for this case.

Nevertheless, improving the squared Sharpe ratios for each of the CPs is not the goal.

Rather it is to construct CEPs that span the MVE portfolio. Indeed, the ex-post optimal

combination of the CEPs shows a far more dramatic improvement over the original FF CPs

compared to the ex-post optimal combination of industry-hedged portfolios. Based on our

Jensen (1968) test, the CEPs’ optimal combination significantly outperforms the industry-

neutral one.28 Since the market could not be included in the industry-hedging, we repeat

the ex-post optimal combination exercise excluding MktRF in the last panel of Table 5.

The CEPs also achieve a higher Sharpe ratio compared to the industry-neutral CPs in this

specification, and that difference is also statistically significant.

These results suggest that simply hedging out industry exposure is not optimal for two

potential reasons. First, some component of the industry factors might be priced. Second,

there can be other sources of common variation that are not related to industries and do

not command a premium. Our procedure is designed to only hedge out unpriced sources of

common variation and does not require us to identify those sources.

4 Conclusions

This paper makes two contributions to the asset pricing literature. First, we examine

the standard procedure employed for constructing characteristic portfolios (CPs): zero-

investment portfolios for which the long side is a portfolio of high characteristic stocks,

and the short side consists of a portfolio of low characteristic stocks. This procedure, which

has become standard since Fama and French (1993), does not guarantee that the set of

portfolios will span the mean variance efficient frontier. The reason is that, when sorting on

a characteristic, the resulting portfolios are likely to load on an unpriced sources of common

variation. Our second contribution is to show how to construct hedge portfolios that cap-

ture the unpriced risk in these portfolios, and which can be combined with the CPs to form

28Note that we test whether Jensen’s α of regressing the CEP on the industry-neutral portfolio is statis-
tically larger than zero. For CPs where the point estimate of that α is negative (such as HML and SMB),
we report a “-”.
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characteristic efficient portfolios (CEPs) that are free of exposure to these unpriced sources

of common variation. Our hedge portfolios are constructed to have maximum loading on the

CPs, subject to having zero characteristic. We show in particular that if the model linking

characteristics and average excess returns is correct, the CEPs will span the mean variance

efficient portfolio.

We illustrate the empirical relevance of our ideas in the context of the five-factor model

of Fama and French (2015). We take the five characteristic portfolios from that model

and construct hedge portfolios for each. Then we construct empirical counterparts to the

CEPs, one for each of the characteristics (market, size, market-to-book, profitability and

investment) by optimally combining the original CPs with our hedge portfolios. The in-

sample squared Sharpe ratio of the optimal combination of the FF CPs is 1.16 whereas it is

2.16 for the CEPs. Removing unpriced sources of common variation from the original CPs

is both empirically and economically relevant.

This paper sheds light on some of the debates in the cross-sectional asset pricing literature.

First, an important, if somewhat implicit, assumption in the literature is that there is a

model linking average excess return to characteristics. The existence of this model is also

our starting point. Our contribution is then to show how to construct the CEPs from the

CPs so that they span the MVE portfolio. It is a representation theorem: If a complete

model of average excess returns and characteristics is available, then average excess returns

can be fully described with a “factor model” in which the “factors” are the CEPs.

Economic theory is interested in understanding the economic forces that are the sources

of premia in asset returns. The CEPs we construct are important when discriminating

between alternative economic models of the marginal rate of substitution of the representative

investor. The reason is that only the return of the optimal combination of the CEPs—which

is the maximum Sharpe ratio portfolio—is maximally correlated with shocks to the marginal

rate of substitution of the representative investor. The returns of the CPs are not, as these

portfolios also load on unpriced sources of common variation. CEPs then provide a lens

through which we can learn about the economic shocks that matter for the representative

investor.

Second, the loadings of any portfolio on the CEPs equal the portfolio characteristics. This

clarifies the characteristics versus covariance debate. To put it sharply: In the context of

the asset pricing models that spring from Fama and French (1993) there is no distinction
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between characteristics and covariances when the portfolios that serve as factors are the

CEPs.

Third, we emphasize the distinction between priced and unpriced sources of common vari-

ation. A full description of the covariance matrix of returns requires at the very least the

CEPs and the hedge portfolios, but only the CEPs are needed for pricing. This speaks to the

theoretical distinction between the APT of Ross (1976) and the ICAPM of Merton (1973).

The first is a model of the covariance matrix of returns whereas the second is a model of

sources of premia, that is, of expected excess returns. Keeping in mind this distinction when

building asset pricing models out of characteristics is key to guaranteeing that the resulting

portfolios span the MVE portfolio.
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Figures

Figure 2: Rolling regression R2s – HML returns on industry returns This figure
shows the R2 from 126-day rolling regressions of daily HML returns on the twelve daily Fama
and French (1997) industry excess returns. The time period is 1963/07 - 2019/06.
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Figure 3: HML loadings on industry-portfolios. The upper panel of this figure plots
the loadings from rolling 126-day regressions of the daily returns to the HML characteristic
portfolio on the twelve daily Fama and French (1997) industry excess returns over the 1963/07
- 2019/06 time period. The lower panel plots only the loading on the Money industry portfolio
(including the 95% confidence interval) and hides the other 11 industry-portfolio loadings.
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Figure 4: Volatility of the money industry-portfolios. This figure shows 126-day volatility

of the daily returns to the Money portfolio over the 1963/07 - 2019/06 time period.
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Figure 5: Rolling regression R2s – HML returns on Money industry returns. This

figure shows the R2 from 126-day rolling regressions of daily HML returns on daily Money industry excess

returns from the 12 Fama and French (1997) industry returns. The time period is 2000/01 - 2019/06.
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Figure 6: Ex-post HML/RMW/CMA loadings vs. characteristics. This figure shows

the time-series average of post-formation characteristic portfolio loading on the x-axis and the time-series

average of each characteristic on the y-axis for each of the 27 portfolios formed on size, characteristic (book-

to-market/operating profitability/investment) and HML/RMW/CMA-loading. The first column uses sorts

on book-to-market and HML-loading, the second one operating profitability and RMW-loading and the last

one investment and CMA-loading.

B
E

M
E

Panel A: HML

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bHML

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BE
M

E

Low bHML

Medium bHML

High bHML

Panel B: RMW

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bRMW

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BE
M

E

Low bRMW

Medium bRMW

High bRMW

Panel C: CMA

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bCMA

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BE
M

E

Low bCMA

Medium bCMA

High bCMA

O
P

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bHML

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

OP

Low bHML

Medium bHML

High bHML

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bRMW

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

OP

Low bRMW

Medium bRMW

High bRMW

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bCMA

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

OP

Low bCMA

Medium bCMA

High bCMA

IN
V

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bHML

0.2

0.0

0.2

0.4

0.6

0.8

IN
V

Low bHML

Medium bHML

High bHML

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bRMW

0.2

0.0

0.2

0.4

0.6

0.8

IN
V

Low bRMW

Medium bRMW

High bRMW

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bCMA

0.2

0.0

0.2

0.4

0.6

0.8

IN
V

Low bCMA

Medium bCMA

High bCMA

M
E

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bHML

2

4

6

8

10

12

14

lo
g(

M
E)

Low bHML

Medium bHML

High bHML

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bRMW

2

4

6

8

10

12

14

lo
g(

M
E)

Low bRMW

Medium bRMW

High bRMW

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Post-formation bCMA

2

4

6

8

10

12

14

lo
g(

M
E)

Low bCMA

Medium bCMA

High bCMA

41



Figure 7: Ex-post MktRF loadings vs. characteristics. This figure shows the time-

series average of post-formation characteristic portfolio loading on the x-axis and the time-series average

of each characteristic on the y-axis for each of the 27 portfolios formed on size, characteristic (book-to-

market/operating profitability/investment) and MktRF-loading. The first column uses sorts on book-to-

market and MktRF-loading, the second one operating profitability and MktRF-loading and the last one

investment and MktRF-loading.
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Figure 8: Ex-post SMB loadings vs. characteristics. This figure shows the time-series av-

erage of post-formation characteristic portfolio loading on the x-axis and the time-series average of each char-

acteristic on the y-axis for each of the 27 portfolios formed on size, characteristic (book-to-market/operating

profitability/investment) and SMB-loading. The first column uses sorts on book-to-market and SMB-loading,

the second one operating profitability and SMB-loading and the last one investment and SMB-loading.
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Tables

Table 1: Low book-to-market stocks in the Money industry as of June 2008. The

first column reports the largest fifteen stocks in the Money industry in the low book-to-market bin, sorted

by market capitalization. The second column reports the book-to-market and the third reports the HML

loading-portfolio to which the stock belongs as of June 30th, 2008.

Firm BE/ME βHML-portfolio
American Express 0.19 3
United Health 0.27 3
Aflac 0.29 3
Charles Schwab 0.13 3
Franklin Resources 0.27 3
Cme Group 0.34 3
Aetna 0.36 2
Express Scripts Holding 0.04 1
Northern Trust 0.27 3
Price T. Rowe 0.17 3
TD Ameritrade 0.18 2
Cigna 0.34 1
Navient 0.36 3
Humana 0.32 2
Nasdaq 0.32 2
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Table 2: Average monthly excess returns for the sorted portfolios.
Stocks are sorted into 3 portfolios based on the respective characteristic — book-to-market (BEME), operating profitability (OP) or investment (INV)
— and independently into 3 size (ME) groups. These are depicted row-wise and indicated in the first two columns. Last, within each bucket, stocks
are sorted into 3 further portfolios based on the loading forecast. These portfolios are displayed column-wise and in Panels A-C for HML, RMW,
CMA, and Panels D-F for MktRF, and Panels G-I for SMB. The last column shows average returns of all 9 respective characteristic-portfolios. The
last row shows averages of all 9 respective loading-portfolios. The sample period is 1963/07 - 2019/06.

Panel A: HML

Char-Portfolio b̂HML-Portfolio
BEME ME 1 2 3 Avg.
1 1 0.49 0.65 0.68 0.58

2 0.51 0.61 0.75
3 0.47 0.55 0.54

2 1 0.85 0.9 0.91 0.74
2 0.71 0.77 0.85
3 0.56 0.58 0.57

3 1 1 0.98 1.02 0.87
2 0.9 0.88 1
3 0.75 0.66 0.61

Avg. 0.69 0.73 0.77

Panel B: RMW

Char-Portfolio b̂RMW -Portfolio
OP ME 1 2 3 Avg.
1 1 0.64 0.81 0.78 0.61

2 0.58 0.72 0.7
3 0.26 0.49 0.49

2 1 0.89 0.93 0.82 0.71
2 0.72 0.79 0.76
3 0.52 0.45 0.48

3 1 0.92 1.02 0.95 0.8
2 0.76 0.84 0.93
3 0.59 0.59 0.57

Avg. 0.65 0.74 0.72

Panel C: CMA

Char-Portfolio b̂CMA-Portfolio
INV ME 1 2 3 Avg.
1 1 0.98 0.97 0.9 0.8

2 0.81 0.86 0.72
3 0.73 0.63 0.59

2 1 0.93 0.92 0.97 0.78
2 0.97 0.86 0.74
3 0.55 0.5 0.59

3 1 0.59 0.76 0.58 0.62
2 0.61 0.73 0.71
3 0.51 0.54 0.54

Avg. 0.74 0.75 0.7

M
k
tR

F

Panel D: MktRF (ME × BEME)

Char-Portfolio b̂MktRF -Portfolio
BEME ME 1 2 3 Avg.
1 1 0.5 0.69 0.56 0.58

2 0.64 0.65 0.6
3 0.56 0.53 0.46

2 1 0.75 0.92 0.96 0.74
2 0.7 0.79 0.86
3 0.48 0.62 0.58

3 1 0.96 1.02 1 0.86
2 0.83 0.92 1.01
3 0.56 0.65 0.81

Avg. 0.66 0.75 0.76

Panel E: MktRF (ME × OP)

Char-Portfolio b̂MktRF -Portfolio
OP ME 1 2 3 Avg.
1 1 0.54 0.75 0.83 0.6

2 0.56 0.74 0.74
3 0.36 0.42 0.46

2 1 0.83 0.94 0.86 0.71
2 0.7 0.77 0.81
3 0.44 0.5 0.54

3 1 1.02 0.97 0.93 0.81
2 0.81 0.84 0.87
3 0.63 0.57 0.65

Avg. 0.65 0.72 0.74

Panel F: MktRF (ME × INV)

Char-Portfolio b̂MktRF -Portfolio
INV ME 1 2 3 Avg.
1 1 0.74 0.99 1.03 0.79

2 0.72 0.78 0.92
3 0.62 0.67 0.68

2 1 0.84 0.94 1.02 0.78
2 0.79 0.83 0.95
3 0.47 0.51 0.64

3 1 0.69 0.7 0.56 0.62
2 0.6 0.77 0.66
3 0.56 0.5 0.53

Avg. 0.67 0.74 0.78

S
M

B

Panel G: SMB (ME × BEME)

Char-Portfolio b̂SMB-Portfolio
BEME ME 1 2 3 Avg.
1 1 0.52 0.66 0.56 0.59

2 0.59 0.65 0.68
3 0.48 0.6 0.59

2 1 0.78 0.86 1 0.76
2 0.66 0.79 0.92
3 0.46 0.65 0.72

3 1 0.96 0.97 1.09 0.89
2 0.82 0.9 1.11
3 0.51 0.73 0.92

Avg. 0.64 0.76 0.84

Panel H: SMB (ME × OP)

Char-Portfolio b̂SMB-Portfolio
OP ME 1 2 3 Avg.
1 1 0.65 0.76 0.72 0.62

2 0.65 0.7 0.67
3 0.29 0.47 0.66

2 1 0.8 0.92 0.89 0.73
2 0.65 0.78 0.87
3 0.42 0.62 0.66

3 1 0.96 1.02 0.89 0.82
2 0.77 0.85 0.94
3 0.57 0.65 0.72

Avg. 0.64 0.75 0.78

Panel I: SMB (ME × INV)

Char-Portfolio b̂SMB-Portfolio
INV ME 1 2 3 Avg.
1 1 0.89 0.93 1 0.82

2 0.69 0.81 0.96
3 0.54 0.74 0.79

2 1 0.89 0.97 0.99 0.81
2 0.78 0.83 1.01
3 0.47 0.6 0.76

3 1 0.6 0.7 0.58 0.63
2 0.62 0.7 0.74
3 0.46 0.63 0.67

Avg. 0.66 0.77 0.83
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Table 3: Alphas and loadings.
The table shows alphas and loadings from time-series regressions of monthly excess returns of the loading-
sorted portfolios on the five Fama and French characteristic portfolios from 1963/07 - 2019/06. The column
labeled ‘1-3’ shows the alphas/loadings of long low-loading short high-loading hedge-portfolios. The last row
shows averages of all 9 loading-portfolios.

Panel A: HML

Char-Portfolio pre-formation b̂HML-sorted portfolios

BEME ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 0.01 -0.03 -0.16 0.17 0.14 -0.41 -2.33 1.43

2 0.10 -0.10 -0.13 0.23 1.24 -1.64 -1.78 2.07

3 0.04 0.04 -0.02 0.06 0.67 0.73 -0.27 0.55

2 1 0.11 0.09 -0.02 0.13 1.67 1.69 -0.36 1.47

2 -0.11 -0.08 -0.03 -0.07 -1.52 -1.22 -0.48 -0.75

3 -0.06 -0.14 -0.13 0.07 -0.70 -1.88 -1.62 0.60

3 1 0.19 0.10 -0.07 0.26 2.76 2.01 -1.20 2.76

2 -0.01 -0.02 0.01 -0.02 -0.07 -0.33 0.15 -0.14

3 0.02 -0.15 -0.12 0.14 0.24 -1.85 -1.21 0.90

Avg. 0.03 -0.03 -0.07 0.11 0.95 -1.13 -2.14 1.80

post-formation bHML t(bHML)
1 1 -0.72 -0.24 0.08 -0.80 -15.28 -7.29 2.59 -14.12

2 -0.75 -0.19 0.29 -1.03 -19.29 -6.63 8.45 -19.76

3 -0.48 -0.18 0.16 -0.64 -16.60 -7.20 5.12 -12.66

2 1 -0.16 0.15 0.50 -0.66 -5.22 5.90 19.16 -15.79

2 -0.04 0.28 0.62 -0.66 -1.25 9.51 18.94 -14.51

3 -0.10 0.28 0.55 -0.65 -2.48 8.04 14.26 -11.31

3 1 0.07 0.45 0.84 -0.77 2.15 20.18 30.90 -17.15

2 0.25 0.49 1.01 -0.76 6.36 16.64 23.48 -11.83

3 0.17 0.66 1.33 -1.16 3.91 17.26 27.88 -15.41

Avg. -0.20 0.19 0.60 -0.79 -11.38 14.24 36.53 -27.80

Panel B: RMW

Char-Portfolio pre-formation b̂RMW-sorted portfolios

OP ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 0.04 0.05 -0.14 0.19 0.55 0.96 -2.43 1.84

2 0.23 0.06 -0.13 0.36 2.25 0.84 -1.95 2.94

3 0.12 0.00 -0.22 0.33 1.31 0.06 -2.81 2.51

2 1 0.10 0.04 -0.15 0.25 1.49 0.75 -2.66 2.84

2 0.02 -0.03 -0.13 0.15 0.31 -0.43 -2.08 1.70

3 0.17 -0.14 -0.21 0.38 2.23 -2.22 -3.08 3.25

3 1 0.06 0.05 -0.08 0.14 0.72 0.81 -1.09 1.25

2 -0.07 -0.09 -0.10 0.02 -1.08 -1.43 -1.19 0.22

3 0.16 0.02 -0.02 0.17 2.42 0.38 -0.24 1.62

Avg. 0.09 -0.00 -0.13 0.22 2.56 -0.12 -3.97 3.91

post-formation bRMW t(bRMW )
1 1 -0.89 -0.19 0.04 -0.92 -22.24 -7.74 1.28 -18.70

2 -1.09 -0.22 0.11 -1.20 -22.15 -6.64 3.34 -20.08

3 -1.22 -0.40 0.10 -1.32 -28.15 -11.47 2.77 -20.45

2 1 0.01 0.29 0.33 -0.32 0.18 10.39 11.71 -7.55

2 -0.04 0.31 0.36 -0.40 -1.14 10.63 11.58 -9.04

3 -0.52 0.16 0.29 -0.81 -14.10 5.14 8.73 -14.33

3 1 0.02 0.44 0.41 -0.39 0.47 14.72 11.55 -7.28

2 0.30 0.54 0.63 -0.33 9.02 17.87 16.05 -6.58

3 -0.06 0.29 0.44 -0.50 -1.93 10.55 14.39 -9.53

Avg. -0.39 0.14 0.30 -0.69 -22.41 9.87 18.70 -24.90
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Panel C: CMA

Char-Portfolio pre-formation b̂CMA-sorted portfolios

INV ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 0.14 0.12 0.02 0.12 2.18 2.37 0.22 1.22

2 0.05 0.02 -0.22 0.27 0.67 0.32 -2.64 2.44

3 0.18 -0.12 -0.23 0.41 2.33 -1.77 -3.15 3.44

2 1 0.08 0.08 0.14 -0.05 1.34 1.39 2.11 -0.57

2 0.26 0.07 -0.14 0.40 3.54 1.24 -1.93 3.90

3 0.13 -0.08 -0.10 0.23 1.69 -1.33 -1.60 1.99

3 1 -0.22 -0.04 -0.19 -0.03 -3.08 -0.80 -2.99 -0.35

2 -0.01 -0.09 -0.00 -0.01 -0.16 -1.42 -0.07 -0.08

3 0.34 -0.00 -0.16 0.50 3.85 -0.03 -2.24 3.66

Avg. 0.11 -0.01 -0.10 0.20 2.91 -0.19 -2.93 3.33

post-formation bCMA t(bCMA)
1 1 0.05 0.26 0.68 -0.63 1.06 6.90 11.43 -8.32

2 -0.10 0.54 0.93 -1.03 -1.84 11.03 14.73 -12.39

3 -0.11 0.56 1.22 -1.32 -1.85 11.28 22.16 -14.86

2 1 -0.24 0.16 0.35 -0.59 -5.07 3.99 7.15 -8.33

2 -0.35 0.12 0.42 -0.77 -6.39 2.82 8.11 -10.23

3 -0.47 0.14 0.65 -1.11 -8.37 3.21 14.13 -13.21

3 1 -0.54 -0.12 -0.01 -0.53 -10.00 -3.07 -0.12 -7.46

2 -0.91 -0.14 0.24 -1.15 -13.68 -2.98 4.66 -13.44

3 -1.15 -0.24 0.33 -1.47 -17.24 -5.31 6.20 -14.42

Avg. -0.42 0.14 0.53 -0.96 -15.70 6.92 21.37 -21.01

Panel D: MktRF (ME × BEME)

Char-Portfolio pre-formation b̂MktRF-sorted portfolios

BEME ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 -0.10 0.02 -0.16 0.06 -1.28 0.27 -1.80 0.48

2 0.01 -0.05 -0.11 0.12 0.17 -0.84 -1.27 1.05

3 0.19 0.03 -0.13 0.32 3.02 0.49 -1.70 2.65

2 1 0.01 0.06 0.03 -0.02 0.24 1.06 0.48 -0.17

2 -0.01 -0.05 -0.15 0.15 -0.11 -0.85 -2.04 1.44

3 -0.06 -0.05 -0.25 0.19 -0.74 -0.70 -2.85 1.47

3 1 0.30 0.10 -0.13 0.43 4.72 2.05 -1.94 4.51

2 0.12 -0.00 -0.16 0.29 1.79 -0.02 -1.72 2.21

3 -0.07 -0.05 -0.13 0.05 -0.77 -0.64 -1.16 0.31

Avg. 0.04 -0.00 -0.13 0.18 1.12 -0.02 -2.91 2.31

post-formation bMktRF t(bMktRF )
1 1 0.86 1.01 1.18 -0.32 43.48 54.91 53.22 -10.44

2 0.90 1.08 1.22 -0.32 54.31 70.29 57.10 -11.18

3 0.87 1.01 1.16 -0.29 55.34 78.21 62.24 -9.85

2 1 0.74 0.94 1.13 -0.39 49.30 69.98 70.29 -15.94

2 0.80 1.02 1.24 -0.45 48.87 64.27 66.33 -17.64

3 0.80 1.02 1.22 -0.42 39.48 56.96 56.76 -13.46

3 1 0.65 0.91 1.21 -0.55 40.82 72.04 75.01 -23.42

2 0.78 1.07 1.32 -0.55 45.51 65.71 56.10 -17.01

3 0.83 1.05 1.29 -0.46 34.30 52.00 47.88 -11.24

Avg. 0.80 1.01 1.22 -0.42 81.41 152.40 108.62 -22.10
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Panel E: MktRF (ME × OP)

Char-Portfolio pre-formation b̂MktRF-sorted portfolios

OP ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 -0.07 0.00 -0.04 -0.03 -0.98 0.04 -0.51 -0.27

2 0.04 0.14 -0.03 0.06 0.48 1.96 -0.28 0.46

3 0.00 0.06 -0.09 0.09 0.00 0.80 -0.93 0.60

2 1 0.15 0.05 -0.17 0.32 2.29 0.83 -2.78 3.45

2 0.05 -0.04 -0.14 0.19 0.72 -0.71 -1.85 1.80

3 0.00 0.01 -0.18 0.19 0.06 0.12 -2.23 1.47

3 1 0.19 0.03 -0.17 0.36 2.58 0.58 -2.09 3.11

2 0.04 -0.09 -0.21 0.25 0.66 -1.40 -2.48 2.30

3 0.23 -0.03 -0.02 0.25 3.51 -0.53 -0.30 2.04

Avg. 0.07 0.02 -0.12 0.19 1.80 0.63 -2.66 2.48

post-formation bMktRF t(bMktRF )
1 1 0.72 0.97 1.20 -0.48 42.01 75.71 63.27 -18.26

2 0.82 1.07 1.26 -0.44 44.05 58.81 51.98 -13.07

3 0.85 1.07 1.25 -0.40 40.72 53.72 54.05 -11.13

2 1 0.69 0.91 1.14 -0.45 41.36 62.45 74.06 -19.17

2 0.76 1.02 1.20 -0.44 47.76 68.76 63.76 -17.00

3 0.80 1.02 1.20 -0.40 42.96 66.70 58.94 -12.55

3 1 0.83 0.99 1.25 -0.42 44.33 66.13 61.85 -14.37

2 0.90 1.10 1.29 -0.39 58.27 67.40 61.56 -14.52

3 0.85 0.99 1.15 -0.30 52.44 76.67 59.05 -9.74

Avg. 0.80 1.02 1.22 -0.41 81.88 165.52 111.23 -21.99

Panel F: MktRF (ME × INV)

Char-Portfolio pre-formation b̂MktRF-sorted portfolios

INV ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 0.08 0.13 0.02 0.05 1.15 2.57 0.30 0.48

2 0.03 -0.05 -0.13 0.15 0.39 -0.86 -1.40 1.23

3 -0.00 -0.08 -0.17 0.16 -0.03 -1.17 -1.96 1.30

2 1 0.16 0.09 0.06 0.11 2.38 1.43 0.82 1.03

2 0.13 0.04 0.00 0.13 2.16 0.57 0.04 1.37

3 -0.01 -0.07 -0.06 0.05 -0.11 -1.23 -0.85 0.46

3 1 0.01 -0.11 -0.31 0.32 0.17 -1.83 -4.73 2.98

2 -0.03 0.03 -0.14 0.11 -0.44 0.40 -1.55 0.91

3 0.31 0.04 -0.07 0.39 4.61 0.59 -0.87 2.96

Avg. 0.08 0.00 -0.09 0.16 2.00 0.08 -2.06 2.22

post-formation bMktRF t(bMktRF )
1 1 0.74 0.98 1.23 -0.49 44.14 75.09 59.68 -17.68

2 0.81 1.05 1.31 -0.49 47.91 65.92 58.36 -15.97

3 0.87 1.08 1.23 -0.36 48.30 63.73 57.69 -11.38

2 1 0.67 0.89 1.11 -0.43 39.07 57.69 64.22 -16.64

2 0.78 0.99 1.20 -0.42 50.57 56.19 71.09 -17.84

3 0.79 0.97 1.13 -0.35 44.43 69.39 62.61 -11.88

3 1 0.81 1.00 1.19 -0.38 43.50 69.38 72.92 -14.19

2 0.89 1.10 1.25 -0.36 54.73 66.40 56.72 -12.07

3 0.86 1.06 1.24 -0.38 50.28 70.01 59.08 -11.75

Avg. 0.80 1.01 1.21 -0.41 83.85 169.24 113.40 -22.03
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Panel G: SMB (ME × BEME)

Char-Portfolio pre-formation b̂SMB-sorted portfolios

BEME ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 -0.15 -0.07 -0.04 -0.11 -2.08 -0.99 -0.36 -0.92

2 -0.08 -0.02 -0.01 -0.07 -1.33 -0.39 -0.11 -0.81

3 0.04 0.06 0.03 0.02 1.04 1.05 0.36 0.18

2 1 -0.00 -0.06 0.11 -0.12 -0.01 -1.20 1.52 -1.13

2 -0.09 -0.10 -0.02 -0.06 -1.32 -1.68 -0.35 -0.68

3 -0.11 -0.08 -0.12 0.01 -1.56 -1.11 -1.61 0.10

3 1 0.17 -0.02 0.02 0.15 2.72 -0.40 0.27 1.55

2 0.04 -0.04 -0.02 0.06 0.59 -0.57 -0.22 0.53

3 -0.24 0.01 0.06 -0.31 -2.89 0.09 0.68 -2.23

Avg. -0.05 -0.04 0.00 -0.05 -1.50 -1.43 0.04 -0.83

post-formation bSMB t(bSMB)
1 1 0.92 1.13 1.37 -0.45 36.73 43.64 39.77 -10.48

2 0.40 0.64 0.91 -0.50 18.50 28.46 34.28 -15.71

3 -0.25 0.04 0.28 -0.53 -17.30 2.34 11.35 -15.86

2 1 0.68 1.00 1.38 -0.70 32.61 52.84 52.09 -19.40

2 0.28 0.52 0.79 -0.51 12.17 24.24 33.04 -16.04

3 -0.31 0.01 0.27 -0.58 -12.01 0.33 10.04 -15.28

3 1 0.71 0.97 1.34 -0.63 32.03 51.76 54.41 -18.31

2 0.31 0.58 0.87 -0.56 12.54 24.51 31.21 -14.33

3 -0.20 0.01 0.29 -0.49 -6.78 0.24 8.86 -10.17

Avg. 0.28 0.54 0.83 -0.55 25.97 58.70 63.40 -27.33

Panel H: SMB (ME × OP)

Char-Portfolio pre-formation b̂SMB-sorted portfolios

OP ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 -0.07 -0.06 -0.04 -0.04 -1.20 -0.97 -0.41 -0.33

2 0.07 0.08 0.00 0.06 0.93 1.10 0.04 0.56

3 -0.13 0.01 0.25 -0.38 -1.95 0.22 2.63 -2.90

2 1 0.04 -0.02 -0.11 0.15 0.69 -0.34 -1.56 1.61

2 -0.06 -0.05 -0.03 -0.03 -1.02 -0.83 -0.42 -0.36

3 -0.07 0.06 -0.01 -0.06 -1.36 1.06 -0.20 -0.61

3 1 0.07 0.04 -0.14 0.22 1.10 0.62 -1.67 1.98

2 -0.09 -0.10 -0.07 -0.01 -1.43 -1.52 -0.98 -0.16

3 0.09 0.02 -0.03 0.11 2.00 0.37 -0.33 1.10

Avg. -0.02 -0.00 -0.02 0.00 -0.59 -0.01 -0.55 0.05

post-formation bSMB t(bSMB)
1 1 0.83 1.17 1.42 -0.59 39.03 56.41 44.94 -15.24

2 0.27 0.63 0.83 -0.56 10.63 25.39 26.88 -14.03

3 -0.34 -0.02 0.19 -0.52 -14.47 -0.68 5.69 -11.54

2 1 0.63 0.94 1.25 -0.61 28.64 45.48 50.60 -18.41

2 0.30 0.56 0.83 -0.54 13.68 28.62 33.21 -16.69

3 -0.32 0.00 0.22 -0.54 -16.44 0.03 9.12 -15.39

3 1 0.81 1.02 1.24 -0.43 34.91 45.46 40.83 -11.07

2 0.41 0.62 0.91 -0.50 18.91 27.86 34.70 -16.01

3 -0.24 0.03 0.34 -0.59 -15.87 1.33 12.84 -16.33

Avg. 0.26 0.55 0.80 -0.54 25.27 60.09 61.23 -27.80
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Panel I: SMB (ME × INV)

Char-Portfolio pre-formation b̂SMB-sorted portfolios

INV ME 1 2 3 1-3 1 2 3 1-3

α t(α)
1 1 0.08 0.01 0.09 -0.01 1.32 0.22 0.88 -0.04

2 -0.08 -0.09 0.02 -0.11 -1.17 -1.28 0.28 -0.94

3 -0.13 -0.05 -0.04 -0.10 -2.05 -0.80 -0.45 -0.83

2 1 0.13 0.07 0.07 0.06 1.93 1.14 0.96 0.53

2 0.07 -0.01 0.12 -0.05 0.97 -0.12 1.87 -0.58

3 -0.07 0.01 0.07 -0.15 -1.52 0.10 1.03 -1.52

3 1 -0.14 -0.16 -0.21 0.07 -2.15 -2.65 -2.95 0.72

2 -0.04 -0.04 -0.05 0.01 -0.59 -0.61 -0.61 0.13

3 0.10 0.17 0.09 0.00 1.99 2.83 1.13 0.04

Avg. -0.01 -0.01 0.02 -0.03 -0.32 -0.37 0.54 -0.51

post-formation bSMB t(bSMB)
1 1 0.79 1.16 1.46 -0.67 36.05 58.97 41.57 -15.91

2 0.29 0.59 0.92 -0.63 11.53 25.33 32.49 -16.10

3 -0.25 -0.01 0.20 -0.45 -11.40 -0.34 7.18 -11.25

2 1 0.65 0.91 1.32 -0.66 28.20 44.57 49.97 -18.21

2 0.26 0.51 0.77 -0.51 10.80 25.63 33.85 -15.48

3 -0.29 0.00 0.25 -0.54 -17.21 0.01 10.27 -16.17

3 1 0.85 1.04 1.30 -0.45 37.21 49.98 51.65 -12.89

2 0.43 0.64 0.94 -0.51 20.13 28.55 34.80 -15.84

3 -0.27 0.09 0.35 -0.63 -15.74 4.24 12.13 -15.97

Avg. 0.27 0.55 0.83 -0.56 26.07 62.87 65.73 -28.02
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Table 4: Results of time-series regressions of hedge-portfolios.
Stocks are first sorted based on size and one of book-to-market, profitability or investment into 3x3 portfolios.
Conditional on those sorts, they are subsequently sorted into 3 portfolios based on the respective loading,
i.e., on HML, RMW or CMA. For MktRF and SMB we use the average of three hedge portfolios, which are
based on a 3x3 sort on size and book-to-market, profitability or investment. The hedge portfolio then goes
long the low loading and short the high loading portfolios. On the bottom, we form combination-portfolios
that put equal weight on three (HML, RMW, CMA), four (HML, RMW, CMA, MktRF) or five (HML,
RMW, CMA, MktRF, SMB) hedge portfolios. Monthly returns of these portfolios are then regressed on the
5 Fama and French (2015) characteristic portfolios in the sample period from 1963/07 - 2019/06.

Hedge-Portfolio Avg. α bMkt−RF bSMB bHML bRMW bCMA R2

rh,MktRF -0.10 0.18 -0.41 -0.39 -0.05 0.17 0.07 0.66

(-0.80) (2.37) (-22.33) (-15.05) (-1.37) (4.72) (1.25)

rh,SMB -0.17 -0.02 -0.17 -0.55 0.01 0.15 0.16 0.72

(-1.72) (-0.45) (-12.37) (-28.33) (0.34) (5.55) (4.00)

rh,HML -0.08 0.11 -0.03 0.05 -0.79 -0.20 0.53 0.61

(-0.83) (1.80) (-1.86) (2.42) (-27.80) (-6.85) (11.71)

rh,RMW -0.07 0.22 0.05 -0.04 -0.31 -0.69 -0.11 0.66

(-0.73) (3.91) (3.26) (-1.96) (-11.66) (-24.90) (-2.63)

rh,CMA 0.04 0.20 -0.04 -0.02 0.31 -0.09 -0.96 0.43

(0.52) (3.33) (-2.48) (-0.86) (10.72) (-2.96) (-21.01)

EW3 -0.03 0.18 -0.01 -0.00 -0.26 -0.33 -0.18 0.70

HML,RMW,CMA (-0.61) (5.48) (-0.82) (-0.18) (-17.29) (-20.59) (-7.46)

EW4 -0.05 0.18 -0.11 -0.10 -0.21 -0.20 -0.12 0.58

EW3+MktRF (-1.15) (5.93) (-14.51) (-9.47) (-14.91) (-13.82) (-5.30)

EW5 -0.07 0.15 -0.10 -0.15 -0.19 -0.17 -0.09 0.56

EW4+SMB (-1.54) (5.06) (-14.04) (-14.58) (-13.50) (-11.82) (-3.96)
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Table 5: Sharpe Ratio improvement.
We report the average return and return volatility (annualized, and in percent) and the corresponding
annualized squared Sharpe-ratio for different versions of each of the five characteristic and characteristic
efficient portfolios. rc are the returns of the characteristic portfolios. r∗c are the returns of the characteristic
efficient portfolios calculated as in equation (32). rindc are the returns of the industry-neutral characteristic
portfolios, where, for the first four characteristic portfolios, we ex-ante hedge out 12 FF industries exposure.
As the industry portfolios explain almost 100% of the market portfolio, we do not calculate an industry-
neutral version of the market. The last three columns depict tests of differences between two portfolios,
i.e., CPs to CEPs, CPs to industry-neutral CPs, and industry-neutral CPs to CEPs. For the mean, we
report the p-value from a t-test of equal means. For the volatility, we report the p-value from Levene’s test
of equal variances. In the Sharpe ratio row, we report the p-value of the α from regressing the second on
the first portfolio. If the α is negative, we report a “-” for the p-value. The second to last panel reports
the statistics for the in-sample Markowitz optimal combination of the five original CPs, the CEPs, and the
industry-neutral portfolios. The last panel repeats the exercise, excluding the MktRF portfolio. The sample
period is 1963/07 - 2019/06.

p-values

rc r∗c rc−ind (rc to r∗c ) (rc to rc−ind) (r∗c to rc−ind)

HML

Mean 3.68 2.43 2.61 0.18 0.30 0.79

Vol 9.60 5.87 5.15 <0.01 <0.01 <0.01

SR2 0.15 0.17 0.26 0.13 0.01 -

RMW

Mean 3.22 2.65 2.29 0.46 0.24 0.50

Vol 7.79 5.06 5.80 <0.01 <0.01 0.88

SR2 0.17 0.27 0.16 0.01 - 0.01

CMA

Mean 2.63 2.33 2.12 0.64 0.49 0.63

Vol 6.51 4.31 3.97 <0.01 <0.01 0.02

SR2 0.16 0.29 0.28 0.01 0.01 0.07

SMB

Mean 2.89 2.00 2.90 0.30 0.99 0.24

Vol 10.27 6.52 8.29 <0.01 <0.01 <0.01

SR2 0.08 0.09 0.12 0.31 0.12 -

MktRF

Mean 6.52 5.96 - 0.74 - -

Vol 15.14 10.51 - <0.01 - -

SR2 0.19 0.32 - <0.01 - -

In-sample optimal combination

Mean 3.49 2.82 2.57 0.05 0.01 0.26

Vol 3.23 1.92 2.20 <0.01 <0.01 0.01

SR2 1.16 2.16 1.37 <0.01 <0.01 <0.01

In-sample optimal combination (without MktRF)

Mean 2.94 2.44 2.35 0.22 0.16 0.64

Vol 3.68 2.05 2.18 <0.01 <0.01 0.08

SR2 0.64 1.43 1.15 <0.01 <0.01 <0.01
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Table 6: Ex-post optimal Markowitz weights.
We report the weights on each of the five characteristic portfolios from a full-sample ex-post Markowitz
optimization. The first column reports results for the original five characteristic portfolios, and the second
column for the five characteristic efficient portfolios. The sample period is 1963/07 - 2019/06.

rc r∗c

CMA 0.39 0.33

HML -0.01 0.08

MktRF 0.16 0.11

RMW 0.34 0.34

SMB 0.12 0.13

Table 7: Spanning tests for HML.
We regress the returns of the original HML characteristic portfolio, rc,HML, (first 2 columns) as well the
returns on the HML characteristic efficient portfolio, r∗c,HML, (columns 3 and 4) on the returns of the
remaining four characteristic and characteristic efficient portfolios. The sample period is 1963/07 - 2019/06.

Portfolio HML HML HML∗ HML∗

α -0.01 (-0.17) 0.02 (0.18) 0.15 (2.60) 0.09 (1.85)

bMktRF 0.03 (1.45) -0.01 (-0.97)

bSMB 0.04 (1.27) 0.03 (1.61)

bRMW 0.25 (6.53) -0.15 (-5.58)

bCMA 1.04 (22.62) 0.43 (13.52)

bMktRF ∗ 0.11 (3.09) 0.02 (1.26)

bSMB∗ 0.08 (1.41) 0.04 (1.54)

bRMW ∗ 0.11 (1.35) -0.26 (-6.94)

bCMA∗ 1.02 (10.92) 0.77 (17.46)

R2 0.47 0.18 0.31 0.50
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Table 8: Correlations.
The table shows the correlations of monthly excess returns among the CPs (Panel A) and CEPs (Panel B).
The sample period is 1963/07 - 2019/06.

Panel A: CPs

MktRF SMB HML RMW CMA

MktRF 1.00 0.26 -0.24 -0.24 -0.35
SMB 0.26 1.00 -0.05 -0.35 -0.04
HML -0.24 -0.05 1.00 0.09 0.66
RMW -0.24 -0.35 0.09 1.00 -0.13
CMA -0.35 -0.04 0.66 -0.13 1.00

Panel B: CEPs

MktRF ∗ SMB∗ HML∗ RMW ∗ CMA∗

MktRF ∗ 1.00 -0.27 -0.17 0.16 -0.29
SMB∗ -0.27 1.00 0.18 -0.26 0.15
HML∗ -0.17 0.18 1.00 -0.52 0.68
RMW ∗ 0.16 -0.26 -0.52 1.00 -0.50
CMA∗ -0.29 0.15 0.68 -0.50 1.00
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Appendix

A Notation

1. Asset specifics

N ∶ Number of assets

M ∶ Number of characteristics

rrr ∶ Vector of excess returns (N × 1)

µµµ ∶ Vector of expected excess returns (N × 1)

Σ ∶ Variance-covariance matrix (N ×N)

X ∶ Matrix of characteristics (N ×M)

λλλc ∶ Vector of characteristic premia (M × 1)

2. Factor model

f ∶ Priced factor

λ ∶ Premium on priced factor

βββ ∶ Vector of individual firms’ loadings (βi) on f (N × 1)

g ∶ Vector of unpriced factors ((K − 1) × 1)

γγγi ∶ Vector of asset i’s loadings on the unpriced factors ggg (1 × (K − 1))

εi ∶ Idiosyncratic shocks for asset i

3. Characteristic portfolios (CPs)

Wc ∶ Matrix of CPs’ weights (N ×M)

wwwc,m ∶ m−th column of matrix Wc (N × 1)

rrrc ≡W ⊺

c rrr ∶ Vector of CPs’ excess returns (M × 1)

µµµc ≡ Errrc ∶ Vector of CPs’ expected excess returns (M × 1)

Σc ≡ var (W ⊺

c rrr) ∶ Covariance matrix of CPs’ returns (M ×M)

B ∶ Matrix of the projection coefficients of rrr on rrrc (N ×M)

bbbm ∶ m−th column of matrix B (N × 1)

4. Characteristic efficient portfolios (CEPs)
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W ∗

c ∶ Matrix of CEPs’ weights (N ×M)

www∗

c,m ∶ m−th column of matrix W ∗

c (N × 1)

rrr∗c ≡W ∗⊺

c rrr ∶ Vector of CEPs’ excess returns (M × 1)

µµµ∗c ≡ Errr∗c ∶ Vector of CEPs’ expected excess returns (M × 1)

Σ∗

c ≡ var (W ∗⊺

c r) ∶ Covariance matrix of CEPs’ returns (M ×M)

B∗ ∶ Matrix of the projection coefficients of rrr on rrr∗c (N ×M)

bbb∗m ∶ m−th column of matrix B∗ (N × 1)

5. Hedge portfolios

Wh ∶ Matrix of hedge portfolios’ weights (N ×M)

wwwh,m ∶ m−th column of matrix Wh (N × 1)

∆ ∶ Matrix of hedge ratios (M ×M)

B Proofs

B.1 The characteristic efficient portfolios

For each characteristic m, let the characteristic efficient portfolio (CEP) be the solution of

the problem:

min
wwwc,m

www⊺

c,mΣwwwc,m (B.1)

s.t. www⊺

c,mX = eee⊺m (B.2)

Where wwwc,m is an (N × 1) vector of portfolio weights, Σ is the (N ×N) covariance matrix,

X an (N ×M) characteristic matrix and eeem an (M × 1) vector with the mth entry equal to

1 and all others equal to 0.

The Lagrangian is:

L =www⊺

c,mΣwwwc,m +κκκm (eeem −X⊺wwwc,m) (B.3)

56



The FOC with respect to www⊺

c,m is given as:

Σwwwc,m −Xκκκ⊺m = 000 (B.4)

wwwc,m = Σ−1Xκκκ⊺m (B.5)

The FOC with respect to κκκm is given as:

X⊺wwwc,m = eeem (B.6)

κκκ⊺m = (X⊺Σ−1X)−1
eeem (B.7)

Hence,

www∗

c,m = Σ−1X (X⊺Σ−1X)−1
eeem (B.8)

The set of CEP weights, W ∗

c , an (N ×M) matrix, of which the mth column is the vector of

weights of the mth CEP, can be written as

W ∗

c = Σ−1X (X⊺Σ−1X)−1
(B.9)

B.2 Proof of Proposition 2.2

Part 1: Let Σ∗

c be the covariance matrix of CEP returns and µµµ∗c be the expected excess

returns of the CEPs. Notice that under Assumption A1, we have that

Σ∗

c = (X⊺Σ−1X)−1
and µµµ∗c = λλλc (B.10)

Hence, the maximum squared Sharpe ratio in the space spanned by W ∗

c is:

SR∗2 = µµµ∗⊺c Σ∗−1
c µµµ∗c = λλλ⊺cX⊺Σ−1Xλλλc = µµµ⊺Σ−1µµµ (B.11)

Hence, the CEPs span the MVE portfolio.
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Part 2: Let B∗ be the (N ×M) matrix of loadings from a projection of assets’ excess returns

on the the CEPs’ excess returns. Then:

B∗ = ΣW ∗

c (W ∗⊺

c ΣW ∗

c )−1 =X (B.12)

B.3 Proof of Proposition 2.4

Part 1: For each characteristic portfolio, the weight vector of the optimal hedge portfolio,

wwwh,m, solves

max
wwwh,m

www⊺

h,mbbbm (B.13)

s.t. www⊺

h,mX = 000 (B.14)

1

2
www⊺

h,mΣwwwh,m = σ2 (B.15)

Where bbbm is the mth multivariate regression coefficient of rrr on rrrc.

The Lagrangian is:

L =www⊺

h,mbbbm −κκκ1,mX
⊺wwwh,m + κ2,m (σ2 − 1

2
www⊺

h,mΣwwwh,m) (B.16)

The FOC with respect to www⊺

h,m is given as:

bbbm −Xκκκ⊺1,m − κ2,mΣwwwh,m = 000 (B.17)

wwwh,m = 1

κ2,m

Σ−1 (bbbm −Xκκκ⊺1,m) (B.18)

Solving the FOC with respect to κκκ1,m for κκκ1,m gives:

(bbb⊺m −κκκ1,mX
⊺)Σ−1X = 000 Ô⇒ (B.19)

κκκ1,m = b⊺mΣ−1X (X⊺Σ−1X)−1
(B.20)
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Replacing κκκ1,m we have:

www∗

h,m = Σ−1 (B −X (X⊺Σ−1X)−1
X⊺Σ−1B) e 1

κ2,m

(B.21)

where e 1
κ2,m

is an (M × 1) vector with the mth entry equal to 1
κ2,m

and all others equal to 0.

Substituting B we have:

www∗

h,m = (WcΣ
−1
c −Σ−1X (X⊺Σ−1X)−1

X⊺WcΣ
−1
c ) e 1

κ2,m

(B.22)

By solving the problem for all characteristics m and substituting W ∗

c , we have:

W ∗

h = (Wc −W ∗

c X
⊺Wc)Σ−1

c E
−1 (B.23)

where E is an (M ×M) diagonal matrix, with columns eκ2,m . 2

Part 2: Rearranging Equation B.22 we have

W ∗

c X
⊺Wc =Wc −WhEΣc (B.24)

Define ∆∗ = EΣc and A =X⊺Wc. Hence,

W ∗

c A =Wc −W ∗

h∆∗ (B.25)

2

B.4 The optimal hedge ratio

The last step is to find the optimal hedge ratio ∆∗

Let

W̃ ∗

c =W ∗

c X
⊺Wc (B.26)
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And

Σ̃∗

c = Var [W̃ ∗⊺

c R] =W ⊺

c X(X⊺Σ−1X)−1X⊺Wc (B.27)

From Equation (B.24) we have:

WhEκ2Σc =Wc − W̃ ∗

c (B.28)

Var [ΣcEκ2W
⊺

hR] = Var [(Wc − W̃ ∗

c )
⊺

R] (B.29)

Ô⇒ ΣcEκ2ΣhEκ2Σc = Σc − Σ̃∗

c (B.30)

But,

Σ̃∗

c = Σc +ΣcEκ2ΣhEκ2Σc − 2W ⊺

c ΣWhEκ2Σc (B.31)

Substituting, we have:

ΣcEκ2ΣhEκ2Σc = W ⊺

c ΣWhEκ2Σc Ô⇒ (B.32)

∆∗ = ΣcEκ2 =W ⊺

c ΣWhΣ
−1
h (B.33)

C Empirical details

C.1 Empirical definition of main variables

We use data from Compustat and CRSP, downloaded directly from the WRDS data service.
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Book Equity (BE) Stockholders book equity, minus the book value of preferred

stock, plus balance sheet deferred taxes (if available and fiscal

year is < 1993), minus investment tax credit (if available), mi-

nus post-retirement benefit assets (PRBA) if available. Stock-

holders book equity is shareholder equity (SEQ), common eq-

uity (CEQ) plus preferred stock (PSTK) or total assets (AT)

minus liabilities (LT) plus minority interest (MIB, if available)

(depending on availability, in that order). Book value of pre-

ferred stock is redemption (PSTKRV), liquidation (PSTKL),

or par value (PSTK) (depending on availability, in that or-

der). Deferred taxes is deferred taxes and investment tax

credit (TXDITC) or deferred taxes and investment tax credit

(TXDB) plus investment tax credit (ITCB) (depending on

availability, in that order).

Market Equity (ME) Total firm market value (∣PRC ∣ ∗ SHROUT ) summed over

all securities belonging to a firm, identified by GVKEY, and

if missing, by PERMCO, as of June. We give preference to

GVKEY to correctly account for tracking stocks. To be valid,

ME must be greater than zero.

Book to Market (BEME) Book equity as of December divided by market equity as of

December ( BE
ME

).

Investment (INV) Total asset (AT) growth ( ATt
ATt−1

− 1). We consider PERMCO

as the identification key. AT must be greater than zero to be

considered.

Operating Profitability (OP) Operating profitability to book equity (BE) ratio. Operating

profitability is sales (SALE) minus cost of goods sold (COGS),

minus selling, general, and administrative expenses (XSGA),

minus interest expense (XINT). In order to be non-missing,

SALE must be non-missing, at least one of the other entries

must be non-missing and BE must be greater than zero.
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C.2 Loading estimation

We calculate ex-ante forecasts of loadings for b’s, i.e., loadings on the benchmark character-

istic portfolios; and for δ’s, i.e., the optimal hedge ratio.

To calculate ex-ante forecasts of loadings we follow Frazzini and Pedersen (2014) and use two

different data windows of individual stock returns: 12-months of daily returns for volatility

and 60 months of overlapping 3-day-cumulated returns for correlation. For this estimation,

we only consider returns where Pt and Pt−1 are non-missing.

For the estimation of correlations and factor volatilities, we calculate Daniel and Titman

(1997) style pre-formation factor returns. Following their procedure, we use portfolio allo-

cations and weights as of June 30 (portfolio formation date), and calculate portfolio returns

for the preceding 5 years, holding the allocation and weights constant for each day.

Finally, we consider the observation that returns of stocks that will be allocated to a particu-

lar portfolio at the end of June, experience a level-shift in average returns starting already in

January, as described in Daniel and Titman (1997). To account for this, when we calculate

b’s, we include a dummy variable for the rank-year, i.e., a variable that is equal to 1 if the

return observation belongs to the year of portfolio formation.

C.3 Dealing with missing prices

CRSP stock files report missing values for returns (RET) if a stock does not have a valid price

for 10 periods or more. The price tolerance period represents 10 months for monthly returns

and 10 days for daily returns. For calculating traded portfolio returns, we instead follow Ken

French’s website and allow for a 200 days price tolerance period. This choice makes daily

and monthly returns comparable. For pre-formation factors as described above, where all

returns can be observed before formation, we exclude any observation with a missing price

(as described above).
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D Supplemental results

D.1 Portfolio bin population

Table D.1: Time-series minimum/mean/maximum number of firms for which loading forecast could be
calculated, within each size-characteristic sorted portfolio.

Panel A: ME × BEME

Portfolio No. of firms

ME BEME min mean max

1 1 27 565 1042

1 2 86 554 968

1 3 189 963 1818

2 1 78 255 427

2 2 119 220 323

2 3 88 152 198

3 1 140 256 468

3 2 101 158 221

3 3 45 95 163

Panel B: ME × OP

Portfolio No. of firms

ME OP min mean max

1 1 100 1177 2142

1 2 30 499 797

1 3 24 381 784

2 1 75 189 348

2 2 68 217 319

2 3 60 208 303

3 1 52 112 199

3 2 114 174 245

3 3 121 219 311

Panel C: ME × INV

Portfolio No. of firms

ME INV min mean max

1 1 65 914 1462

1 2 29 517 967

1 3 44 701 1297

2 1 68 161 268

2 2 38 201 309

2 3 52 262 388

3 1 51 122 210

3 2 116 192 236

3 3 86 195 323

Table D.1 displays the minimum, mean and maximum population of the 3×3 independently

sorted ME × BEME, ME × OP, and ME × INV portfolios, counting only firms for which a

forecast loading is available. Within each of these, stocks are sorted within a characteristic

bucket, on the respective forecast loadings, i.e., when we divide the displayed numbers by

three, we have the minimum/mean/maximum number of firms of any of the 27 portfolios

that the hedge portfolios are based on.

It turns out that the resulting portfolios end up well-populated. The lowest number of firms

occurs in the small/high-OP portfolio, in 1964, when the small/high-OP portfolio contains 24

firms. In general, even portfolios of big/value stocks contain 95 stocks, on average, resulting

in loading-sorted portfolios with more than 30 stocks.

D.2 High power vs. low power

The achievable improvement on a set of CPs intimately depends on the post-formation

loadings of the hedge portfolios. Since the hedge portfolios have roughly zero expected

returns, more negative loadings means that we are capturing variation in loadings that is
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not related to returns, which is translated in positive αs. Therefore, once we add these

portfolios to the original CPs we should expect large Sharpe ratio improvements.

Maximizing the variation in loadings that is not related to returns relates to the power of

the test that has as null hypothesis that the CPs form a valid asset pricing model (Daniel

and Titman, 2012).

We show how the use of the methodology to forecast loadings advanced in this paper, which

we refer to as the “high power” methodology, increases the power of standard asset pricing

tests. We illustrate how a standard “low power” methodology used to estimate the loadings

(see, e.g., Daniel and Titman, 1997; Davis et al., 2000) leads to a failure to reject asset pricing

models and thus imposes too low a bound on the volatility of the stochastic discount factor.

We do so by constructing characteristic balanced portfolios and showing that the ability of

standard asset pricing models to properly account for their average returns depends critically

on whether one uses the low or high power methodology.

The traditional low power approach uses as instruments for future loadings the result of

regressing monthly stock excess returns on characteristic portfolio excess returns over a

moving fixed-sized window based on, e.g., 36 or 60 monthly observations, skipping the most

recent 6 months.

We first compare the low and high power methodology by looking at the post-formation load-

ings. We estimate the post-formation loadings by running a full-sample time series regression

of the monthly excess returns on the five FF CPs (see equation (31)). To check whether

our high power methodology results in larger dispersion of the post-formation loadings when

compared to the low power methodology, Figure D.1 shows the post-formation loadings on

the x-axis and the respective average characteristic on the y-axis for each of the 27 portfolios.

Panels A and B correspond to the low and high power methodology, respectively.

Consider, for example, the top panels in Figure D.1, which focus on the loadings on HML for

each of the two estimation methodologies. There are 3×3 groups of estimates—connected by

lines—each corresponding to a particular BEME × ME bin. Each of those lines have three

points corresponding to the three portfolios from the conditional sort on ex-ante estimated

loadings.

The ideal output would be to find variation in the loadings that is not associated with

variations in characteristics, our proxy for expected returns. Hence, the ideal equivalent
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of Figure D.1 would be one in which the spread from low betas (red dots) and high betas

(green dots) is maximized, but conditional on belonging to a characteristic bucket, there is

no additional correlation between the characteristic and the forecast loading, i.e., the dashed

lines are perfectly horizontal.

As it is readily apparent from Figure D.1, the high power methodology generates substan-

tially more cross-sectional dispersion in post-formation loadings than the low power method-

ology, which is key to generating hedge portfolios that are maximally correlated with the

candidate characteristic portfolio. For example, focus on the loadings on HML for the large

growth portfolios (portfolio (1,3)). The low power methodology generates post-formation

loadings on HML, bHML, for each of the three portfolios of −0.43, −0.22 and 0.01, respec-

tively. The high power methodology instead generates post-formation HML loadings of

−0.48, −0.18 and 0.16, respectively. For the low power methodology, the loading of a port-

folios that goes long on the low loading portfolio and short the high loading portfolios is

−0.44 with a t−statistic of −8.76. For the high power methodology the same post-formation

loading is −0.64 with a t−statistic of −12.66.

Notice that, reassuringly, both methodologies generate a positive correlation between pre-

and post-formation loadings for each of the book-to-market and size groupings. This positive

correlation between pre- and post extends to the case of CMA. But in the case of the loadings

on RMW, the low power methodology does not produce a consistent positive association

between pre- and post-formation loadings, whereas the high power methodology does.

The spreads in the loadings translate directly into the ability to reject the FF model. Table

D.2 Panel A shows the results of time series regressions of the low power hedge portfolios on

the FF CPs. First, notice that the average returns of the hedge portfolios are not statistically

different from zero, as in the high power case (Panel B). Second, notice that the loadings of

each hedge portfolio on the respective FF CP is much lower for the low power, compared

to the high power methodology. For example, the bHML for the high power methodology is

-0.79 with a t-statistics of -27.8, whereas for the low power it is -0.54 with a t-statistic of

-19.55. Finally, we can look at the α’s. For the low power method we cannot reject the FF

model using any of the hedge portfolios in isolation, since all α’s are not statistically different

from zero. For the equal weighted combinations of hedge portfolios shown in the last rows of

the table, we can see that the t-statistics of the αs are significantly positive even for the low
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power methodology. However, the equal weight combination αs are systematically bigger for

the high power methodology.

In sum then our high power methodology forecasts future loadings better than the one used

by Daniel and Titman (1997) or Davis et al. (2000) and, as a result, they translate into more

efficient hedge portfolios as well as asset pricing tests with higher power.
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Figure D.1: Ex-post loading vs. characteristic. This figure shows the time-series average of

post-formation characteristic portfolio loading on the x-axis and the time-series average of the respective char-

acteristic on the y-axis of each of the 27 portfolios formed on size, characteristic (book-to-market/operating

profitability/investment) and characteristic portfolio loading. Panel A uses the low power methodology and

B uses the high power methodology. The first row uses sorts on book-to-market and HML-loading, the

second one operating profitability and RMW-loading and the last one investment and CMA-loading.
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Table D.2: Results of time-series regressions on characteristic-balanced hedge-
portfolios.
Stocks are first sorted based on size and one of book-to-market, profitability or investment into 3x3 portfolios.
Conditional on those sorts, they are subsequently sorted into 3 portfolios based on the respective loading,
i.e., on HML, RMW or CMA. For MktRF and SMB we use the average of three hedge portfolios, which are
based on a 3x3 sort on size and book-to-market, profitability or investment. The hedge portfolio then goes
long the low loading and short the high loading portfolios. On the bottom, we form combination-portfolios
that put equal weight on three (HML, RMW, CMA), four (HML, RMW, CMA, MktRF) or five (HML,
RMW, CMA, MktRF, SMB) hedge portfolios. Monthly returns of these portfolios are then regressed on the
5 Fama and French (2015) characteristic portfolios in the sample period from 1963/07 - 2019/06. In Panel
A we use the low power and in Panel B we use the high power methodology for forecasting loadings.

Panel A: Low power

Hedge-Portfolio Avg. α bMkt−RF bSMB bHML bRMW bCMA R2

rh,MktRF -0.13 0.01 -0.29 -0.22 0.07 0.16 0.02 0.57

(-1.42) (0.22) (-18.39) (-10.17) (2.36) (5.12) (0.42)

rh,SMB -0.11 -0.02 -0.14 -0.38 0.04 0.09 0.17 0.59

(-1.40) (-0.32) (-10.37) (-19.67) (1.44) (3.38) (4.06)

rh,HML -0.04 0.05 -0.00 -0.00 -0.54 -0.05 0.44 0.39

(-0.51) (0.82) (-0.32) (-0.18) (-19.55) (-1.66) (10.24)

rh,RMW -0.04 0.09 0.03 -0.01 -0.19 -0.31 -0.00 0.33

(-0.61) (1.59) (2.47) (-0.74) (-7.26) (-11.51) (-0.11)

rh,CMA 0.02 0.10 -0.04 0.01 0.28 0.00 -0.68 0.31

(0.28) (1.74) (-2.57) (0.36) (10.35) (0.10) (-16.04)

EW3 -0.02 0.08 -0.00 -0.00 -0.15 -0.12 -0.08 0.41

HML,RMW,CMA (-0.53) (2.71) (-0.33) (-0.35) (-10.93) (-8.38) (-3.74)

EW4 -0.05 0.06 -0.07 -0.06 -0.09 -0.05 -0.06 0.28

EW3+MktRF (-1.46) (2.18) (-10.37) (-5.86) (-7.00) (-3.55) (-2.61)

EW5 -0.05 0.05 -0.07 -0.10 -0.08 -0.04 -0.03 0.32

EW4+SMB (-1.61) (1.88) (-10.43) (-9.76) (-6.27) (-2.86) (-1.31)

Panel B: High power

Hedge-Portfolio Avg. α bMkt−RF bSMB bHML bRMW bCMA R2

rh,MktRF -0.10 0.18 -0.41 -0.39 -0.05 0.17 0.07 0.66

(-0.80) (2.37) (-22.33) (-15.05) (-1.37) (4.72) (1.25)

rh,SMB -0.17 -0.02 -0.17 -0.55 0.01 0.15 0.16 0.72

(-1.72) (-0.45) (-12.37) (-28.33) (0.34) (5.55) (4.00)

rh,HML -0.08 0.11 -0.03 0.05 -0.79 -0.20 0.53 0.61

(-0.83) (1.80) (-1.86) (2.42) (-27.80) (-6.85) (11.71)

rh,RMW -0.07 0.22 0.05 -0.04 -0.31 -0.69 -0.11 0.66

(-0.73) (3.91) (3.26) (-1.96) (-11.66) (-24.90) (-2.63)

rh,CMA 0.04 0.20 -0.04 -0.02 0.31 -0.09 -0.96 0.43

(0.52) (3.33) (-2.48) (-0.86) (10.72) (-2.96) (-21.01)

EW3 -0.03 0.18 -0.01 -0.00 -0.26 -0.33 -0.18 0.70

HML,RMW,CMA (-0.61) (5.48) (-0.82) (-0.18) (-17.29) (-20.59) (-7.46)

EW4 -0.05 0.18 -0.11 -0.10 -0.21 -0.20 -0.12 0.58

EW3+MktRF (-1.15) (5.93) (-14.51) (-9.47) (-14.91) (-13.82) (-5.30)

EW5 -0.07 0.15 -0.10 -0.15 -0.19 -0.17 -0.09 0.56

EW4+SMB (-1.54) (5.06) (-14.04) (-14.58) (-13.50) (-11.82) (-3.96)
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