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Appendix A Inconsistency of QML

In many settings, it useful to assume that residuals are drawn from Normal distributions in estima-
ting a statistical model. When the true distribution of the residual is not Normal, these estimates
are Quasi-Maximum Likelihood (QML). Wooldridge (1986) provides su�cient conditions for the
consistency and asymptotic normality of QML estimators. These conditions are not satisfied in
our case. Below, we provide an example where the HMM return generating process innovations are
drawn from a non-normal distribution and the resulting QML estimator—obtained by maximizing
the misspecified normal likelihood—gives an asymptotically biased (inconsistent) estimate of the
true parameter value.
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An econometrician observes the time series of {R
t

}T
t=1 but not the underlying state. The parameters

p and �L are known. The econometrician estimates the unknown parameter �H by QML, that is
by assuming that "

t

is drawn from the standard normal distribution, whereas "
t

is either 1 or -1
with equal probability. In what follows, we show that when

�H = 1.5, �L = 1, and p = 0.52, (A.3)

the QML estimator of �H is inconsistent.
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for every F
t�1.

The QML estimate b�H is obtained by maximizing (A.4), giving rise to the first order condition:
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If b�H converges to �0
H, the LHS of (A.7) converges to the true expectation as
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under mild regularity conditions. Noting that the RHS of (A.7) is always zero, it follows that
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We show the inconsistency of b�H by verifying that (A.9) cannot hold. When �H = �0
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To determine the sign of each component in RHS of (A.10), we need the conditional distribution of
R

t

. Since �⇤
t�1 is the true probability of S

t

= H given F
t�1 and "

t

in (A.1) is drawn from a binomial
distribution of 1 or -1 with equal probability, the probability mass of R

t

over (��H,��L, �L, �H)

equals
⇣

�

⇤
t�1

2 ,
1��

⇤
t�1

2 ,
1��

⇤
t�1

2 ,
�

⇤
t�1

2

⌘
.

First, we determine the sign of E
h

�t�1

L(Rt)
@�(Rt|�H)

@�H
|F

t�1

i
. From the properties of the normal

density, it follows that @�(x|�)
@�

= �(x|�)
⇣
� 1

�

+ x

2

�

3

⌘
and �(�x|�) = �(x|�). Hence

E

�
t�1

L
@� (R

t

|�H)

@�H
|F

t�1

�
=

�⇤
t�1

2

X

Rt=��H,�H

�
t�1

L (R
t

)
�(R

t

|�H)

✓
� 1

�H
+

R2
t

�3
H

◆

+
1� �⇤

t�1

2

X

Rt=��L,�L

�
t�1

L (R
t

)
�(R

t

|�H)

✓
� 1

�H
+

R2
t

�3
H

◆

=

�
1� �⇤

t�1

�
�
t�1

L(�L)
�(�L|�H)

✓
� 1

�H
+

�2
L

�3
H

◆

< � (1� p)2
�(�L|�H)

�(�L|�L)

✓
�2
H � �2

L

�3
H

◆
, (A.11)

where the last inequality is from (A.6) and L(�L) < �(�L|�L).
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where the last three inequalities can be verified by (A.6) and the given parameter values of (A.3).
Finally, we show that @�t�1
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state distribution determined by (A.2). Since �0 does not depend on �H, the following holds:
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Equation (A.14) describes how the econometrician updates the probability on the hidden state of
S
t

using the misspecified normal likelihood after observing R
t

. Equation (A.15) shows how the
econometrician predicts the hidden state of S
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Taking the derivative of (A.16) with respect to �H, we obtain the following:
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To determine the sign of each component in RHS of (A.17), we use the following properties:
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for every possible realization of R
t

from {��H,��L, �L, �H}. With the assumption that @�t�1

@�H
 0,

inequalities of (A.18), (A.19), and (A.20) ensure that RHS of (A.17) is non-positive. Hence, with
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for every possible information set of F
t�1.

Recall that we want to show that (A.10) is strictly negative. Finally, combining (A.11), (A.12),
and (A.20), we conclude that
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completing the proof that QML estimate of b�H in (A.7) will not converge to the true parameter
value.
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Appendix B Additional Tables

Table 14: Option-like Feature of Momentum Returns and Market Conditions

We partition the months in our sample into three groups: ‘High’ group is made up of months
when variable describing the market conditions (past market returns, realized volatility of the
market, or leverage of loser portfolio stocks) was in the top 20th percentile and the ‘Low’ group
corresponds to months when the market condition variable was in the bottom 20th percentile. The
rest of the months are classified as ‘Medium’. For Panel A, the sample period is 1929:07-2013:12.
For Panel B and C, the sample period is 1927:07-2013:12. In Panel A, we group the sample on
the basis of cumulative market return during the 36 months preceding the month in which the
momentum portfolios are formed. In Panel B, we group the months based on the realized volatility
of daily market returns over the previous 12 months. In Panel C, we use the breakpoints of the
loser portfolio for grouping. We then pool the months within each group and analyze the behavior
of momentum strategy returns. Specifically, we estimate equation (1) with ordinary least squares
using momentum strategy returns (RMOM) and the returns of winner and loser portfolio in excess
of risk free return (Re

WIN and Re

LOS) as LHS variables and report results in Panel A-1-i, B-1-i, and
C-1-i. For comparison, we report the estimates for the CAPM, without the exposure to the call
option on the market in (1), in Panel A-1-ii, B-1-ii, and C-1-ii. Then, we count the numbers of
large momentum losses worse than negative 20% within the groups and report those in Panel A-2,
B-2, and C-2. Finally, we compare the skewness of Re

p,t

with that of estimated " of (1) in Panel
A-3, B-3, and C-3. ↵ is reported in percentage per month. The t-statistics are computed using
the heteroscedasticity-consistent covariance estimator by White (1980).

Continued on next page
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Table 14 – continued from previous page

Panel B: Past 12 Months Realized Volatility of Market Returns

High Medium Low

LHS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS

B-1: Option-like features

B-1-i: Henriksson-Merton Estimates

↵ 2.90 1.07 -1.83 1.93 0.77 -1.16 2.40 1.38 -1.02
t(↵) (2.96) (2.71) (-2.58) (5.73) (4.05) (-5.01) (4.55) (4.21) (-2.98)
�0 -0.59 0.94 1.52 0.16 1.35 1.19 0.54 1.55 1.02
t(�0) (-4.83) (13.78) (17.78) (1.72) (25.36) (18.24) (3.00) (14.91) (8.23)
�+ -0.91 -0.27 0.63 -0.25 -0.19 0.06 -0.63 -0.46 0.17
t(�+) (-3.23) (-2.14) (3.39) (-1.38) (-1.93) (0.51) (-1.92) (-2.39) (0.79)
Adj.R2(%) 0.49 0.74 0.83 0.00 0.78 0.68 0.03 0.73 0.57

B-1-ii: CAPM Estimates

↵ 0.12 0.23 0.11 1.48 0.43 -1.04 1.58 0.78 -0.80
t(↵) (0.18) (0.82) (0.20) (6.69) (3.58) (-6.96) (4.87) (4.16) (-3.56)
� -1.10 0.78 1.88 0.05 1.27 1.22 0.19 1.30 1.11
t(�) (-8.43) (14.68) (21.61) (0.78) (41.31) (29.99) (1.83) (23.47) (15.56)
Adj.R2 0.45 0.73 0.82 0.00 0.78 0.68 0.01 0.72 0.57

B-2: Number of Momentum Losses worse than -20%

13 0 0

B-3: Conditional Skewness

LHS -1.88 -0.21 1.42 -0.17 -0.65 -0.23 0.00 -0.13 0.16
" -0.62 -0.86 0.70 -0.11 0.33 0.41 -0.01 0.59 0.48

Continued on next page
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Table 14 – continued from previous page

Panel C: Breakpoints of Loser Portfolio

Low Medium High

LHS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS

C-1: Option-like features

C-1-i: Henriksson-Merton Estimates

↵ 2.67 0.96 -1.71 2.79 1.21 -1.58 0.81 0.32 -0.50
t(↵) (2.67) (2.35) (-2.38) (5.82) (6.23) (-4.50) (1.40) (0.84) (-1.51)
�0 -0.65 0.91 1.56 0.22 1.39 1.17 0.52 1.48 0.96
t(�0) (-5.46) (14.09) (17.98) (1.83) (25.31) (13.89) (2.96) (10.89) (13.27)
�+ -0.92 -0.29 0.63 -0.61 -0.35 0.26 -0.14 -0.09 0.05
t(�+) (-3.31) (-2.37) (3.34) (-2.07) (-3.18) (1.23) (-0.42) (-0.44) (0.27)
Adj.R2 0.50 0.70 0.83 0.03 0.80 0.67 0.16 0.81 0.75

C-1-ii: CAPM Estimates

↵ -0.07 0.10 0.16 1.76 0.62 -1.14 0.57 0.17 -0.40
t(↵) (-0.09) (0.33) (0.31) (8.50) (5.77) (-7.58) (1.86) (0.76) (-2.50)
� -1.15 0.75 1.91 -0.08 1.22 1.30 0.45 1.43 0.98
t(�) (-9.05) (14.61) (22.14) (-0.95) (34.29) (20.93) (4.67) (25.29) (16.17)
Adj.R2 0.47 0.69 0.82 0.00 0.79 0.67 0.17 0.81 0.75

C-2: Number of Momentum Losses worse than -20%

12 1 0

C-3: Conditional Skewness

LHS -1.70 -0.02 1.44 -1.21 -0.73 0.50 0.04 -0.51 0.07
" -0.39 0.06 0.75 -0.72 -0.05 0.69 -0.09 0.31 0.70
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Table 15: Conditional covariance of momentum and value factor returns

This table presents the conditional covariance of MOM with three value factors: the HML factor by FF (Fama and
French, 1993) and two value factors by AMP (Asness et al., 2013) – i) “Value Everywhere” which utilizes all assets
across many markets and countries and ii) “Value US Equity” which uses only assets in US equity market. We
group the months in our sample into three equal-sized tertiles (High, Med, Low) based on the predicted probability
of the hidden state being turbulent, Pr (St = Turbulent|Ft1). All numbers are reported in percentage squared per
month.

Value Factor Sample Period High Med Low All

HML(FF) 1927:01-2013:12 (1044 months) -29.97 -1.20 -0.46 -10.51
Value Everywhere (AMP) 1972:01-2013:12 (504 months) -14.16 -2.60 -1.32 -6.14
Value US equity (AMP) 1972:02-2013:12 (503 months) -31.96 -7.31 -3.07 -14.20
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