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1. Introduction

Mean-variance efficient portfolio optimization, introduced by Markowitz (1952), is still widely used in

practice and taught in business schools. When either expected returns or the covariance matrix of returns

changes over time then so will the conditional mean-variance efficient ‘Markowitz’ portfolio. However, when

trading costs are non-zero, it is not optimal to rebalance rebalance so as to perfectly track the Markowitz

portfolio. In recognition of this fact, practitioners generally employ ad hoc adjustments to Markowitz optimization,

but it is recognized that these approaches are not optimal (Grinold and Kahn, 1999).

In a recent paper, Gârleanu and Pedersen (2013, GP) show that in the presence of quadratic transaction

costs,1 an investor with mean-variance preferences should adopt a trading rule that only partially rebalances

from her current position towards an aim portfolio at a fixed trading speed.2 They derive closed-form

expressions for both the optimal aim portfolio and the trading speed that depend on the dynamics of expected

returns, the quantity of and aversion to risk, and the magnitude of price impact. However, the GP model

assumes that both the covariance matrix of price changes and the price-impact parameters are constant. In

this paper we derive a closed-form solution for the optimal portfolio trading rule in a similar setting but where,

in addition to expected returns, volatilities and transaction costs may be stochastic. This is consistent with

considerable empirical evidence that stock return volatilities are stochastic and that transaction costs covary

with the level of stock volatility, going back at least to Rosenberg (1972) for the former and to Stoll (1978)

for the latter.

Specifically, we obtain a closed-form solution for the optimal dynamic portfolio when expected returns,

covariances, and price impact parameters follow a multi-state Markov switching model.3 Consistent with GP,

we assume that the investor’s objective function is ‘dynamic’ mean-variance: investors maximize the expected

discounted sum of portfolio returns net of trading costs, minus a penalty for the variance of portfolio returns.4

In this setting, and for an agent with these preferences, we show that the optimal trading rule is similar to

that derived in GP, namely to partially trade from the current position towards an aim portfolio. However,

when volatilities and trading costs are stochastic, then both the aim portfolio and the trading speed are state

dependent. Specifically, the aim portfolio is a weighted average of the state-contingent Markowitz portfolios

in all possible future states, where the weight on each conditional-Markowitz portfolio is a function of the

likelihood of transitioning to that state, the state persistence, and the risk and transaction costs faced in that

state relative to the current one. Similarly, the optimal trading speed depends on the relative magnitude of

the transaction costs in various states and their transition probabilities. Moreover, while we solve the model

1 Quadratic transaction costs emerge with a linear price impact model, i.e., trading ∆ shares of a stock move its average price
by λ∆ for a given constant λ.

2 Litterman (2005) makes a similar point in an unpublished note.
3 One additional advantage of this approach, which we discuss more below, and develop fully in Section 4, is that it allows

us to specify a process for return volatility as opposed to price-change volatility in each state, consistent with the observed
log-normality of prices.

4 In the Internet Appendix, we discuss two approaches to micro-found this objective function, which is frequently used by
academics and practitioners.
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in a discrete-time setting in the body of the paper, Internet Appendices B.1 and B.2 solve continuous time

versions of the model, and obtain consistent solutions.

To see how the solution here differs from the GP solution, which assumes constant volatility and liquidity,

consider a simple setting with a single risky asset and with two states: a low volatility state L where transaction

costs are zero, and a high volatility state H where transaction costs are positive. When the economy is in the

L-state, it is clearly optimal to trade (at infinite speed) all the way to the aim portfolio because transaction

costs in that state are zero. In contrast, trading speed will be finite in the H-state. Further, the aim portfolio

in the H-state will equal the conditional Markowitz portfolio in that state.5 Intuitively, in the H-state the

investor should put zero-weight on the L-state Markowitz portfolio, because when the economy does enter

the L-state she can immediately rebalance to the (optimal) aim portfolio at zero cost. However, the aim

portfolio in the L-state will be a weighted average of both H- and L-conditional Markowitz portfolios, where

the weight on the H-conditional Markowitz portfolio increases with the likelihood of transitioning from L to

H, the persistence of the state H, and with the ratio of the volatilities in the H- and L-states.

One immediate implication of our model is that the aim portfolio will deviate significantly from the

Markowitz benchmark in anticipation of possible future shifts in relative risk and/or transaction costs. Consider

two assets, which can be thought of as “Treasury” and “Corporate” bond portfolios. Suppose that in the

low-volatility state (state L), the Corporate portfolio has slightly lower liquidity, but a far higher Sharpe ratio

than the Treasury portfolio, so that the conditional Markowitz portfolio has most of its weight on Corporates.

However, if the economy transitions to state H, then the risk and trading costs will rise and the Sharpe-ratio

will both rise for Corporates, but all will remain unchanged for Treasuries. We first show that, in anticipation of

this, the aim portfolio in the L-state will have a large Treasury position. Intuitively, if the economy transitions

from the L- to the H-state, then the volatility of the Corporate portfolio will increase, its Sharpe ratio will

fall, and it will become illiquid and costly to trade out of. Thus, the aim portfolio preemptively reduces the

holdings of Corporates in the L-state.

Second, while GP show that in their setting trading speed is a function only of the (constant) trading cost

and volatility, in our setting trading speed takes account of both current and future values of these parameters.

Continuing this example, in the L-state it optimal to trade the less liquid Corporate portfolio more aggressively

than the Treasury portfolio because, if the economy does transition to the H-state, the Corporate portfolio

will become much more expensive to trade, while the Treasury portfolio will remain relatively liquid.

Our model also has implications for the popular (among practitioners) “risk-parity” strategy, which weights

each asset class in such a way that each contributes an equal amount of volatility to the overall fund (see, e.g.,

Bridgewater, 2011; Asness, Frazzini and Pedersen, 2012). Risk-parity can be thought of as the mean-variance

efficient portfolio, when all asset classes have identical Sharpe ratios and the correlations across asset classes

5 That is, the aim portfolio in the H-state puts zero weight on the L-state Markowitz portfolio.
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are zero.6 Interestingly, even if it were optimal to hold a risk-parity portfolio at all times in the absence

of transaction costs, we show that, when transaction costs and volatilities of various asset classes move over

time in a correlated fashion, then it is optimal to deviate significantly from the risk-parity portfolio, and that

this deviation is larger in the low-risk regime. This is because the optimal portfolio in the low-risk regime,

where transaction costs tend to be lowest, needs to put some weight on the optimal risk-parity portfolio in

the high-risk regime, where high transaction costs will make it much more costly to delever out of the higher

risk asset classes.

We present an empirical application of our framework in which a fund moves in and out of a stock market

index, taking into account time-varying expected returns, volatility, and transaction costs. While our analytical

results are all derived in the context of a regime-switching model of price changes (i.e., a Gaussian normal

model for prices), we show that our model remains tractable for a regime-switching model of dollar returns

(a log-normal model of prices). Since the latter model fits the data empirically better, we use this framework

for the empirical implementation. We estimate a four-state Markov regime-switching model of returns and

find, both in-sample and out-of-sample, evidence of time-variation in first and second moments. To estimate

the transaction cost parameters, we use a proprietary data set on realized trading costs incurred by a large

financial institution trading on behalf of clients, as measured by the implementation shortfall of their trades

(Perold, 1988). We show that trading costs vary significantly across regimes and that, not surprisingly, trading

costs are higher for higher volatility regimes.

We test our trading strategy both in-sample and out-of-sample. For the out-of-sample test, the regime

shifting model and the state probabilities are estimated using only data in the information set of an agent on

the day preceding the trading date. We compare the performance of our optimal dynamic strategy to three

alternatives: a constant-dollar investment in the risky asset, corresponding to an unconditional estimate of the

sample mean and variance of returns; a buy-and-hold policy that never trades; and finally a myopic one-period

mean-variance problem optimized for current transaction costs, but that ignores the future dynamics of the

Markov regime-switching model (see, e.g., Grinold and Kahn, 1999).

We find that the net-of-cost performance of the dynamic trading strategy is far higher than the other three

strategies. To determine the source of this superior performance, we examine what source of time-variation

leads to the biggest gains for the dynamic strategy. Specifically, we compare the gains obtained from timing

changes in expected returns, in volatility, and in transaction costs. In this out-of-sample experiment, we find

that the biggest benefits arise from taking into account for time-variation in market volatility and transaction

costs, while the benefits from timing (estimated) variation in mean returns is more mixed. This reflects the fact

that mean returns move less than one-for-one with variances. Our findings here are consistent with Moreira

and Muir (2017), who show that there are gains to moving out of the market in response to an increase in

market variance because the conditional market risk-premium moves less than one-for-one with its variance.

6 These assumptions are sometimes justified based on the difficulty to reliably estimate means and correlations.
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Thus, since our model captures the time-variation in volatilities and the corresponding changes in transaction

costs more accurately, it is able to manage the risk-exposure and the incurred transaction costs more reliably,

which directly contributes to increasing the net performance.

There is a large academic literature on portfolio choice that has extended Markowitz’s one-period mean-variance

setting to a dynamic multiperiod setting with a time-varying investment opportunity set and more general

objective functions.7 This literature has largely ignored realistic frictions such as trading costs, because

introducing transaction costs and price impact in the standard dynamic portfolio choice problem tends to

make it intractable. Indeed, most academic papers studying transaction costs focus on a very small number of

assets (typically two), limited predictability, and typically no time-variation in second moments or transaction

costs.8

Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) investigate the impact of fixed and proportional

transaction costs on the utility costs and the optimal rebalancing rule of a single risky asset with time-varying

expected return, using dynamic programming. Lynch and Tan (2010) use a numerical procedure to solve for

the optimal portfolio choice of an investor with access to two risky assets under return predictability and

proportional transaction costs. Brown and Smith (2011) discuss the high-dimensionality of the problem and

provide heuristic trading strategies and dual bounds for a general dynamic portfolio optimization problem

with transaction costs and return predictability that can be applied to a larger number of stocks. Longstaff

(2001) studies a numerical solution to the one risky asset case with stochastic volatility when agents face

liquidity constraints that force them to trade absolutely continuously.

Our paper is also related to the large literature on asset allocation under regime shifts. For example, Ang

and Bekaert (2002) apply a regime-switching model to an international asset allocation problem to account for

time-varying first and second moments of asset returns. Ang and Timmermann (2012) survey this literature

in detail. One common observation in empirical work estimating regimes is the low expected returns in

high-volatility states. Thus, these models would often suggest that the mean-variance investors should scale

down their equity exposure in times of market stress. Our paper complements this literature by accounting for

high transaction costs during these volatile periods. Jang, Keun Koo, Liu and Loewenstein (2007) extend the

models of Constantinides (1986) and Davis and Norman (1990) (e.g., one risky asset and one risk-free asset)

with regime-switching fundamental parameters. They consider a small investor with no price impact and

illustrate that proportional transaction costs may have a first-order effect on liquidity premia. In comparison,

we consider a regime-switching model in which an investor with price impact can trade multiple risky assets.

As noted earlier, our paper is most closely related to Litterman (2005) and Gârleanu and Pedersen (2013,

7 Merton (1969, 1971), Brennan, Schwartz and Lagnado (1997), Kim and Omberg (1996), Campbell and Viceira (2002),
Campbell, Chan and Viceira (2003), Liu (2007), Detemple and Rindisbacher (2010), and many more. See Cochrane (2007) for a
survey.

8 Constantinides (1986), Davis and Norman (1990), Dumas and Luciano (1991), and Shreve and Soner (1994) study the
two-asset (one risky, one risk-free) case with independent and identically distributed (i.i.d.) returns. Liu (2007) studies the
multi-asset case under constant absolute risk aversion (CARA) preferences and i.i.d. returns. Cvitanić (2001) surveys this
literature.
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GP). They obtain a closed-form solution for the optimal portfolio choice in a model where: (1) expected price

change per share for each security is a linear, time-invariant function of a set of autoregressive predictor

variables; (2) the covariance matrix of price changes is constant; (3) trading costs are a time-invariant

quadratic function of the number of shares traded, and (4) investors have a linear-quadratic objective function.

Their approach relies heavily on linear-quadratic stochastic programming (see, e.g., Ljungqvist and Sargent,

2004). Our approach uses a similar objective function, but allows for time-variation in means, volatilities,

and transaction costs, albeit within a regime-switching framework. Moreover, in contrast with the GP

framework, our framework is equally tractable when expected price changes are constant in each state of the

regime-switching model (i.e., prices follow arithmetic Brownian motion) or when expected returns, conditional

on the state, are constant (i.e., prices follow geometric Brownian motion). Because historical returns are

better described with a log-normal distribution, this prices is Since the latter is a more realistic description of

historical returns, it is the one we use for our empirical implementation.

2. A regime switching model for price changes

We begin with a setting with N risky assets, in which the N -dimensional vector of price changes from

period t to t+ 1, dSt, follows the process:

E[dSt] = µ(st)

E[(dSt − µ(st))(dSt − µ(st))
>] = Σ(st),

where µ(st) and Σ(st) are, respectively, the N -vector of expected price changes and the N × N covariance

matrix of price changes. Both µ and Σ are a function of a state variable st which follows a Markov chain

with transition probabilities πs,s′ . In Section 4, we will solve for the optimal dynamic strategy when returns,

rather than price change, follow this process.

We consider the optimization problem of an agent with the following objective function:

max
nt

E

[ ∞∑
t=0

ρt
{
n>t µ(st)−

1

2
γn>t Σ(st)nt −

1

2
∆n>t Λ(st)∆nt

}]
. (1)

This objective function is the same as that considered by GP, namely, that of an investor who maximizes

a discounted sum of mean-variance criterion in every period, net of trading costs. It is also popular among

practitioners (e.g., Litterman, 2005). In the Internet Appendix, we show that in the continuous time limit

of the model this objective function corresponds to an agent who maximizes her expected wealth E[Wτ ] at

some random horizon τ , drawn from an exponential distribution with intensity − ln ρ > 0, who faces quadratic

transaction costs and incurs continuous holding costs that are proportional to the variance of the position.9

9 These holding costs are justified by the fact that even though asset management firms may not have direct risk-aversion,
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The agent chooses her holdings nt in each period t so as to maximize the objective function in Eq. (1).

Specifically, at the end of period t − 1, the agent hold nt−1 shares of the N assets. At this point the agent

observes the state st, and trades ∆nt = nt − nt−1 shares. As noted earlier, consistent with GP we specify a

linear price impact model. Λ(st) is the price impact matrix, so the N -vector of price concessions is Λ(st)∆nt

and the total (dollar) cost of trading in period t is therefore 1
2∆n>t Λ(st)∆nt. We assume that Σs and Λs are

real symmetric positive-definite matrices.10

In the absence of transaction costs (when Λs = 0), the optimal solution would be to hold the conditionally

mean-variance optimal Markowitz portfolioms = (γΣs)
−1µs at all times. Further, if there were no time-variation

in the investment opportunity set (that is, if µs and Σs were constant), then it would be always optimal to

hold the mean-variance efficient Markowitz portfolio. However, when there are transaction costs and the

opportunity set is time-varying, it becomes optimal for the investor to rebalance the portfolio, and deviate

from the conditionally mean-variance efficient portfolio.

In the GP framework, the conditional mean of stock price changes (µs) follows an AR(1) process, but the

covariance matrix Σ and the matrix of transaction cost parameters Λ are required to be deterministic. In our

framework Σ and Λ vary across states. Using a Markov regime-switching model allows us to obtain tractable

solutions even though the model is not in the standard linear-quadratic framework.

For simplicity we begin by considering only a two-state Markov chain model, with states H and L, but we

generalize this to more states in Section 2.4. We will use the following notation throughout: for all t where

st = s ∈ {H,L}, st+1 = z ∈ {H,L} and s′ = {H,L} \ s. Then, using the dynamic programming principle, the

value function V (nt−1, s) satisfies

V (nt−1, s) = maximize
nt

(
n>t µs −

1

2
∆n>t Λs∆nt −

γ

2
n>t Σsnt + ρE [Vt(nt, z)]

)
.

We guess the following quadratic form for our value functions:

V (n, s) = −1

2
n>Qsn+ n>qs + cs,

where Qs is a symmetric N ×N matrix and qs, cs are N -dimensional vectors of constants for s ∈ {H,L}. We

now define the expectation conditional on state s for any matrix Ms to be Ms = πs,sMs + πs,s′Ms′ . With

this notation, the right-hand side of the Hamilton-Jacobi-Bellman (HJB) equation we are optimizing can be

they face extra costs for holding inventory in risky assets, that may be related to regulatory capital requirements, prime broker
fees, collateral and financing costs, or risk-budgeting constraints. Quadratic holding costs have been widely used in the literature
(e.g., Vives, 2011; Rostek and Weretka, 2012; Du and Zhu, 2017; Duffie and Zhu, 2017). In our formulation holding costs are
effectively also quadratic, but unlike in these other papers, they are stochastic because they change with the liquidity and risk
state. As an alternative micro-foundation for this objective function based on risk preferences, we show in the Internet Appendix,
that it corresponds to maximizing the certainty equivalent of an agent with ‘source-dependent’ stochastic differential utility who
has a constant absolute risk-aversion coefficient γ towards return shocks and vanishing risk-aversion coefficient γ2 → 0 towards
regime-shifts.

10 Naturally, we want θ>Λθ > 0 ∀ θ 6= 0. Further, we have θ>Λθ = 1
2
θ>Λθ + 1

2
(θ>Λθ)> = θ>( 1

2
Λ + 1

2
Λ>)θ. So if Λ is not

symmetric we can replace it with 1
2

(Λ + Λ>) which is.
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rewritten as a quadratic objective:

−1

2
n>t Jsnt + n>t js + ks

where

Js = γΣs + Λs + ρQs

js = µs + Λsnt−1 + ρqs

ks = −1

2
nt−1Λsnt−1 + ρcs.

This is optimized for nt = J−1s js, that is:

nt =
(
γΣs + Λs + ρQs

)−1
(µs + ρqs + Λsnt−1) .

Further, the optimized value is simply 1
2j
>
s J
−1
s js + ks. Thus matching coefficients we find that the matrices

Qs, qs for s = H,L must satisfy the system of equations:

Qs = −Λs
(
γΣs + Λs + ρQs

)−1
Λs + Λs, (2)

qs = Λs
(
γΣs + Λs + ρQs

)−1
(µs + ρqs) . (3)

Note that given a solution for QH and QL, we can obtain qH and qL in closed-form as a matrix weighted

average of µH and µL. While we are not aware of a closed-form solution for QH and QL in general, it

is straightforward to obtain a numerical solution to the coupled Riccatti matrix equation, as we discuss in

Lemma 2 below. Further, for a variety of special cases we consider below, it is possible to obtain closed-form

solutions.

With a solution in hand, we can define the conditional aim portfolio as the portfolio that maximizes the

value function at any time t conditional on the state. We can now characterize the optimal trading rule and

the aim portfolios.

Theorem 1. The optimal trade at time t in state s is a matrix weighted average of the current position vector

and the conditional aim portfolio:

nt = (I − τs)nt−1 + τsaims (4)

where the trading speed τs = I (and Qs = 0) if Λs = 0, and else τs = Λ−1s Qs ∀s = {H,L} where (QH , QL)

solve a system of coupled equations:

I − Λ−1s Qs = [Λ−1s (γΣs + ρπss′Qs′) + I + ρπssΛ
−1
s Qs]

−1. (5)
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The aim portfolio, which maximizes the value function conditional on the current state, is given by

aims =
(
γΣs + ρQs

)−1
(µs + ρqs). (6)

Further, the aim portfolio is a weighted average of the conditional Markowitz portfolios (ms = (γΣs)
−1µs):

aims = (I − αs)ms + αsms′ ∀s = H,L (7)

where

αs = {(γ + ρπs′sQs′Σ
−1
s′ QsQ

−1
s′ )Σs + ρπss′Qs′}−1ρπss′Qs′

.

Proof. Optimizing the value function with respect to nt gives:

aims = (Qs)
−1

(qs) ∀s = H,L.

Substituting from the definitions in Eqs. (2) and (3) we obtain:

aims =
(
−Λs

(
γΣs + Λs + ρQs

)−1
Λs + Λs

)−1 (
Λs
(
γΣs + Λs + ρQs

)−1
(µs + ρqs)

)
=
(
−
(
γΣs + Λs + ρQs

)−1
Λs + I

)−1 (
γΣs + Λs + ρQs

)−1
(µs + ρqs)

=
(
γΣs + ρQs

)−1
(µs + ρqs)

where the last equality obtains by noting that if we define the matrix

M =
(
−
(
γΣs + Λs + ρQs

)−1
Λs + I

)−1 (
γΣs + Λs + ρQs

)−1
then

M−1 =
(
γΣs + Λs + ρQs

) (
−
(
γΣs + Λs + ρQs

)−1
Λs + I

)
=
(
γΣs + ρQs

)
,

which immediately implies that M =
(
γΣs + ρQs

)−1
.

We then expand the expression for aims:

aims = (γΣs + ρπssQs + ρπss′Qs′)
−1 (

µs + ρQs
)

⇒ (γΣs + ρπssQs + ρπss′Qs′) aims = (γΣsms + ρπssQsaims + ρπss′Qs′aims′)

⇒ (γΣs + ρπss′Qs′) aims = (γΣsms + ρπss′Qs′aims′)

⇒ aims = (γΣs + ρπss′Qs′)
−1

(γΣsms + ρπss′Qs′aims′) .

We then substitute for aims′ = (γΣs′ + ρπs′sQs)
−1

(γΣs′ms′ + ρπs′sQsaims) and obtain after dividing by

8



γ

[
Σs +

ρ

γ
πss′Qs′

(
I − (γΣs′ + ρπs′sQs)

−1
ρπs′sQs

)]
aims = Σsms + ρπss′Qs′ (γΣs′ + ρπs′sQs)

−1
Σs′ms′ .

Using the simple identity I − (F +G)−1G = (F +G)−1F , with F = γΣs′ and G = ρπs′sQs, we finally obtain

{
Σs + ρπss′Qs′ [γΣs′ + ρπs′sQs]

−1Σs′
}
aims = Σsms + ρπss′Qs′ [γΣs′ + ρπs′sQs]

−1Σs′ms′ .

Thus, this shows that we can write aims = (I − αs)ms + αsms′ where

αs =
{

Σs + ρπss′Qs′ [γΣs′ + ρπs′sQs]
−1Σs′

}−1
ρπss′Qs′ [γΣs′ + ρπs′sQs]

−1Σs′

which can be further simplified to

αs = {(γ + ρπs′sQs′Σ
−1
s′ QsQ

−1
s′ )Σs + ρπss′Qs′}−1ρπss′Qs′ .

Eq. (4) shows that this optimal dynamic strategy is to trade to a portfolio with shares nt that is a linear

combination of the current portfolio nt−1 and of the aim portfolio aims. τs is the matrix that specifies how

quickly the investor should trade towards the aim portfolio. τs = I means that, in state s, the investor should

immediately and fully trade to aims. τs = 0 means that the investor should not trade.

The state-contingent aim portfolio aims is defined as the portfolio that would maximize the value function

in that state. Another interpretation of the aim portfolio is as the no-trade portfolio, i.e., the portfolio for which

the optimal trade is zero, as long as the state does not change.11 The speed at which we trade towards the aim

portfolio is, in general, dependent on the state. That is, it is typically increasing in variance and decreasing

in the transaction costs, which may be state-dependent in our framework. In the case (similar to GP) where

only expected returns are stochastic (and covariances and transaction costs are constant) the trading speed is

constant as well. Further, the aim portfolio is state-dependent. When either a state is absorbing (πss = 1) or

transaction costs are zero (Λs = 0) then the aim portfolio is equal to the conditional mean-variance Markowitz

portfolio (ms). But in general, the aim portfolio is a weighted average of the conditional mean-variance

portfolio across states, where the weight on each state is typically higher, if the variance of returns or the

transaction cost is higher in that state.

We now consider a few special cases to gain further insights into the optimal trading rule.

11 Note that, because the vector of security holdings n has units of shares, and because the price change process is a function
only of the state, the optimal portfolio will not change when prices change.
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2.1. The case where only µs changes with the state (GP)

If only µs changes with the state (i.e., if Σs = Σ and Λs = Λ for all s) then the solution Qs = Q is

independent of the state and satisfies:

I − Λ−1Q = [γΛ−1Σ + I + ρΛ−1Q]−1.

This equation has an explicit solution as we show in the following lemma.12

Lemma 1. Consider the diagonalization of the matrix Λ−1Σ = F diag(`i)F
−1 in terms of its eigenvalues

`i ∀i = 1, . . . , n. Then note that

I − F−1Λ−1QF = [γ diag(`i) + I + ρF−1Λ−1QF ]−1.

It follows that Q = ΛF diag(ηi)F
−1 such that the ηi solve the quadratic equations (∀i = 1, . . . , n):

1− ηi = [γ`i + 1 + ρηi]
−1

that is:

ηi =
ρ− 1− `iγ +

√
(ρ− 1− `iγ)2 + 4`iγρ

2ρ
.

This implies that the trading speed τs = Λ−1s Qs = F diag(ηi)F
−1 is independent of the state. That is,

investors trade at a constant speed towards their aim portfolio independent of the state. The speed of trading

for specific stock i is increasing in the agent’s time discount rate and in the agent’s risk-aversion. Furthermore,

for the special case where Λ and Σ are diagonal matrices, then the speed of trading stock i is increasing in

`i = Σii/Λii, that is, the ratio of a stock’s variance to its cost of trading.

While the trading speed is constant, the aim portfolios differ across states. Indeed, using Theorem 1, the

aim portfolio in state s can be computed as:

aims = (I − αs)ms + αsms′

12 We note that since Σ,Λ are assumed to be symmetric matrices with (strictly) positive real eigenvalues, then Λ−1Σ is
diagonalizable. First, note that since Λ is real symmetric positive definite then so is its inverse. This implies we can decompose

Λ−1 = M
1
2M

1
2 . It follows that M

1
2 ΣM

1
2 is symmetric and positive definite (as x>M

1
2 ΣM

1
2 x = (M

1
2 x)>Σ(M

1
2 x) > 0 ∀x 6= 0

since Σ is positive definite) and therefore has positive real eigenvalues. In turn, it is easy to show that Λ−1Σ = M
1
2M

1
2 Σ has

the same eigenvalues as M
1
2 ΣM

1
2 .
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where

αs = {γΣ + ρπs′sQ+ ρπss′Q}−1ρπss′Q

= (γQ−1Σ + (ρπs′s + ρπss′)I)−1ρπss′

= F diag

(
ρπss′

γ`i/ηi + ρπs′s + ρπss′

)
F−1.

The state s aim portfolio is a weighted average of the conditional Markowitz portfolios in the current state

(s) and in the alternative state (s′), where the weight on the current state Markowitz portfolio is increasing

in the persistence of that state πs,s and in risk-aversion γ, but decreasing in the time discount factor ρ, and

the persistence of the other state πs′,s′ . Furthermore, the weight is also stock-specific and increasing for stock

i in `i, which captures the notion that the more risky a stock is relative to its trading cost the more weight

we should put on the conditional Markowitz portfolio for computing the aim portfolio.

To a large extent these results are consistent with the findings of GP, albeit with a different model of the

time-variation in expected returns. The more interesting case is when we also allow covariances and transaction

costs to change across states. In that case, both trading speed and aim portfolios change across states.

2.2. The case where ΛL = 0 and ΛH > 0

When transaction costs are zero in state L, then the solution implies QL = 0 and that QH solves a

one-dimensional equation:

I − Λ−1H QH = [γΛ−1H ΣH + I + ρπHLΛ−1QH ]−1.

We note that this equation is identical to that obtained in the previous section with an adjusted time

discount rate (ρπHL). It follows that the solution is

QH = ΛHFH diag(ηH,i)F
−1
H ,

where (`H,i, FH) diagonalize the matrix Λ−1H ΣH = FH diag(`H,i)F
−1
H and the ηH,i are given by:

ηH,i =
ρπHL − 1− `H,iγ +

√
(ρπHL − 1− `H,iγ)2 + 4`H,iγρπHL

2ρπHL
.

We can calculate the optimal trading speeds and the aim portfolios in both states. As discussed earlier,

in the L-state where transaction costs are zero, it is optimal to move instantaneously to the aim portfolio,

that is, τL = I. In contrast, in the high transaction cost state H, it is optimal to trade slowly, with a trading

speed τH = FH diag(ηH,i)F
−1
H , towards the aim portfolio. The aim portfolio in the high transaction cost state

H is the conditional Markowitz portfolio, that is, aimH = mH = (γΣH)−1µH . Intuitively, in the state H,

the aim portfolio does not take into account the investment opportunity set in the zero-transaction cost state

11



L, because when the economy transitions to state L the investor can immediately rebalance to the first best

position at zero cost. However, in the zero-transaction cost state, the aim portfolio is a linear combination of

the two Markowitz portfolios mH and mL: aimL = (I−αL)mL+αLmH , where the weight put on the H-state

Markowitz portfolio is αL = [γΣL+ρπLHQH ]−1ρπLHQH . To summarize, when there are no transaction costs

in the low state the optimal trading strategy is:

nH,t = (I − τH)nt−1 + τHmH

τH = FH diag(ηH,i)F
−1
H

nL,t = aimL = (I − αL)mL + αLmH

αL = [γΣL + ρπLHQH ]−1ρπLHQH .

2.3. The case with ΛL > 0 and ΛH =∞

We now consider the polar case, where transaction costs are infinite in the H-state. Clearly, it is then

optimal not to rebalance in the high state. Following the derivation of our model, with no rebalancing in the

H-state, we see that the equation for QH simplifies to:

QH = γΣH + ρQ̄H .

In turn, this implies that the equation for QL becomes:

I − Λ−1L QL = [γΛ−1L (ΣL +
ρπLH

1− ρπHH
ΣH) + I + ρLΛ−1L QL]−1

with ρL = ρ(πLL+ ρπLH

1−ρπHH
). This equation admits an explicit solution as before, in terms of the diagonalization

of the matrix Λ−1L (ΣL + ρπLH

1−ρπHH
ΣH) = FL diag(`L,i)F

−1
L .

It follows that the solution is QL = ΛLFL diag(ηL,i)F
−1
L where the ηL,i are given by:

ηL,i =
ρL − 1− `L,iγ +

√
(ρL − 1− `L,iγ)2 + 4`L,iγρL

2ρL
.

In this case the optimal trading strategy is:

nH,t = nt−1

nL,t = (I − Λ−1L QL)nt−1 + Λ−1L QLaimL

aimL = (1− αL)mL + αLmH

αL = {(1− ρπHH)Σ−1H ΣL + ρπLH}−1ρπLH .

To summarize, when transaction costs are infinite in state H it is clearly optimal to not rebalance in

12



that state. Instead, in state L, both the speed of trading and the aim portfolio depend on the investment

opportunity set in the H-state. The aim portfolio puts more weight on the H-conditional Markowitz portfolio

the higher the probability to transition to that state (πLH), the more persistent the state is (πHH), and the

higher the variance of returns in that state relative to the L-state (Σ−1H ΣL). The trading speed on the other

hand increases in both ΣH and ΣL as well as the persistence of the low and high states.

2.4. The general case

For the general case, we need to solve the system of coupled matrix equations (5) for (QH , QL):

I − Λ−1s Qs = [Λ−1s (γΣs + ρπss′Qs′) + I + ρπssΛ
−1
s Qs]

−1.

While we cannot solve the system in general, we observe that in the special case where the eigenvectors of the

covariance and transaction cost matrices remain identical across states and only the eigenvalues change, the

system does admit a simple explicit solution. This is a ‘knife-edge case’ in the general space of unconstrained

matrices.13 Still, it is an interesting parametrization, as it nests the special case where both the transaction

cost and covariance matrices are diagonal with arbitrary coefficients in all states. It also nests the special case

considered in GP where the transaction cost matrix is proportional to the covariance matrix, but here with

possible state-dependent constants of proportionality (i.e., where Λs = λsΣs and Σs′ = βΣs for some positive

scalars β, λs, λs′). Also, for the general case of unconstrained matrices that can be solved numerically, we

propose a simple and efficient algorithm to compute the solution. We summarize these results in the following

lemma.

Lemma 2. If Λs = F diag(λi,s)F
−1 and Σs = F diag(υs,i)F

−1 ∀s = H,L, then the solution of the system of

matrix equations in Eq. (5) is Qs = ΛsF diag(ηs,i)F
−1 where ∀i = 1, . . . , n the constants (ηH,i, ηL,i) solve the

system of coupled quadratic equations:

λi,s
1− ηi,s

= γυi,s + ρπss′ηi,s′λi,s′ + λi,s + ρπssηi,sλi,s.

In general, when Σs,Λs do not have identical eigenvectors across states, then the solution to the system of

matrix equations in Eq. (5) can be obtained by the following recursion.

Given an initial (Qn−1H , Qn−1L ), perform the eigenvalue decomposition (for s = H,L) of Λ−1s (γΣs+ρπss′Q
n−1
s′ ) =

Fs diag(`i,s)F
−1
s . Then set Qns = ΛsFs diag(ηi,s)F

−1
s where the ηi,s solve the equation

1− ηi,s = [`i,s + 1 + ρπssηi,s]
−1,

13 To understand the parameter restrictions, note that given that both transaction cost and covariance matrices are symmetric
positive definite they each would have n(n+1)/2 free parameters (subject to the restriction that they are positive definite). When
we constrain all four (i.e., two in each state) matrices to have the same eigenvectors, then the total number of free parameters
becomes n(n + 1)/2 parameters for one matrix and only n parameters for the other three matrices. Indeed, since the latter
matrices inherit the eigenvectors of the first matrix, each has only n free parameters, corresponding to their positive eigenvalues.
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that is:

ηi,s =
ρπss − 1− `i,s +

√
(ρπss − 1− `i,s)2 + 4`i,sρπss

2ρπss
,

and iterate until convergence. It is natural to use as an initial guess for Q0
s either the zero matrix, or the

solution corresponding to πss = 1.

We conjecture that the algorithm will be especially useful for large numbers of stocks, where iterating

over the N(N + 1) elements of the QL and QH matrices should be less efficient than iterating over the 2N

diagonal ηi,s elements. In our applications, we found that only three to five iterations are sufficient to achieve

convergence. Given a numerical solution of the QH and QL matrices, we can analyze the optimal trading rule

and aim portfolios.

3. Implications of the model

In this section, we illustrate the insights of our model using two simple numerical experiments. In the first

application, we have two assets differing in their ranking of Sharpe ratios across two states of the economy.

We analyze the aim portfolio and trading speeds when each asset’s trading cost is state-dependent. In the

second experiment, we analyze the sensitivity of the risk-parity allocation strategy to stochastic trading costs.

3.1. Example: Corporate vs. Treasury bonds

We illustrate some of the important implications of the model with a two-asset and two-state example. The

two states are high- and low-volatility. The two assets are intended to capture salient features of a “Corporate”

and a “Treasury” bond. The Corporate has a higher unconditional Sharpe ratio than does the Treasury, but

is more expensive to trade. However, in the (low-probability) high-risk state, the Corporate’s Sharpe ratio

falls below that of the Treasury and becomes more expensive to trade. The realized returns of the two bonds

are assumed to be positively correlated at 0.5. Note that we use these numbers for illustration only, as our

model parameters are not calibrated to actual bond returns or transaction cost distributions.

[Insert Table 1 about here.]

The left panel of Table 1 provides the parameters for this example. We assume that the initial prices for

two bonds are each $100. In the low-risk state, the annualized volatility of each of the two bonds is $10. Asset

1—the Corporate—has an annual expected price change of $10, while the Treasury (Asset 2) has an annualized

expected price change of $8. Thus, the low-volatility state Markowitz portfolio has a larger investment in the

Corporate than the Treasury.

However, when the economy transitions to the high-volatility state the annualized price-change volatilities

jump to $30, and the annualized expected price changes of the Corporate and Treasury bonds change to

$12 and $16, respectively. In the high-volatility state, the Treasury has the higher expected return, so the

Markowitz portfolio now holds more Treasuries.
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[Insert Figure 1 about here.]

In Fig. 1 we plot weights on the Corporate and Treasury in the conditional Markowitz- and aim-portfolios,

in both the low- and high-risk states, as a function of the price impact for the Corporate in the high-risk state.

All other parameters are consistent with the left panel of Table 1, and trading is daily.

Fig. 1 shows that the aim portfolio weights in the high-risk state are always very close to the Markowitz

portfolio weights. Intuitively, since our parameters are set so that the price impact is very small in the low-risk

state, the aim portfolio in the high-risk state need not take into account the investment opportunity set in the

low-risk state.

However, as we increase the price impact for the Corporate in the high-risk state, the aim portfolio starts to

put less weight on Corporates and more in Treasuries. For high enough expected trading costs of Corporates

in the H-state, it becomes optimal to hold more Treasuries even in the low-risk state. That is, it is optimal to

hold more of the asset that appears dominated in Sharpe ratio terms in the L-state to preemptively anticipate

the future (optimal) deleveraging in the H-state. Intuitively, you don’t want to be stuck with a large position

in corporates when the economy transitions to the high-risk (and high transaction cost) state where it will be

extremely expensive to sell the corporates.

[Insert Figure 2 about here.]

Fig. 2 plots the corresponding trading speeds in both assets in both regimes.14 Intuitively, we see that the

trading speed is generally higher in the high-risk regime due to the higher volatility. However, as it becomes

more costly to trade Corporates in that regime, its trading speed drops rapidly. Interestingly, the trading

speed of Corporates actually increases in the low-risk regime in response to the increase of its trading cost

in the high-risk regime. That is, even though Corporate portfolio is more expensive to trade in the low-risk

regime, it is optimal to trade it more aggressively in anticipation of its much relative trading cost in the

high-risk regime.

This example captures some salient features of the Corporate versus Treasury bond returns. Corporate

bonds typically offer higher expected rates of returns in expansions (good states) than Treasury bonds.

However, during recessions (bad states) their risk increases dramatically and, empirically, their expected

returns fall relative to Treasuries.15 Further, corporate bonds become far more expensive to trade in recessions,

while Treasuries remain liquid. As the stylized example demonstrates, because it is optimal to reduce the

position in the Corporates in the high-risk state when these are very costly to trade, it can be optimal to hold

a larger share of the Treasuries already in the good state even though in that state the conditional Sharpe ratio

of Corporates dominates that of Treasuries. Further, even though Corporates may less liquid than Treasuries

14 For simplicity, we only plot the diagonal values of the trading speed matrix Λ−1
s Qs, which is actually not diagonal in this

example.
15 Of course, it is arguable whether the expected return is actually lower, since expected returns are hard to measure. For

illustration we assume that in the bad states the risk of the Corporate bond is higher and its Sharpe ratio is lower.
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in the good state, it may be optimal to trade them more aggressively in the good state in anticipation their

much lower liquidity in the high-risk regime.

This example provides an answer to the question: in a portfolio with liquid and illiquid assets, which one

should one liquidate first because of a liquidity shock? Our analysis gives the following answer. First and

foremost, one should trade the illiquid asset more aggressively in anticipation of the future liquidity crisis

and steer the portfolio to a position that overweights liquid assets, possibly deviating from the unconditional

optimal portfolio to take into account the future possible risk and liquidity shocks. Of course, when the crisis

does hit, one should trade the less liquid asset less aggressively and the more liquid assets more aggressively

in steering the portfolio towards the conditional mean-variance efficient portfolio.

3.2. A risk-parity strategy

A risk-parity asset allocation strategy attempts to maintain steady contributions to risk from different

asset classes by down weighting an asset class when its risk spikes. Such strategies have received considerable

attention among practitioners, and have notably been applied in the Bridgewater “All Weather” fund. A

rationale for such strategies is that, if expected returns and correlations across asset classes are difficult to

forecast, and are uncorrelated with measured risk, it can be optimal to size positions in these asset classes

based on forecast return variance alone. For example, if expected price changes are constant and equal

(e.g., µ = 1) and all correlation coefficients equal to zero, the mean-variance efficient Markowitz portfolio

becomes a ‘risk-parity’ portfolio in that the weight on each asset is proportional to the inverse of its variance

(ms = (γΣs)
−11 = vec( 1

γυi,s
)), where υi,s is the price-change variance of asset i in state s.16 Here we illustrate

that, in this setting, it is optimal to deviate from the ‘risk-parity allocation’ if the costs of trading the asset

classes are a function of their risk, which is certainly the case empirically (Almgren et al., 2005). With

Σs = diag(υi,s) and Λs = diag(λi,s) and µs = 1, we can solve for the optimal aim portfolio in closed-form

from Lemma 3 with F = diag(1).

The right panel of Table 1 provides the parameters for the risk-parity example. The initial prices for the

“safe” and “risky” assets, Assets 1 and 2, respectively, are each $100. In the low-risk state the annualized

price-change volatilities are $10 and $30. But when the economy transitions to the high-volatility state the

volatilities jump to $20 and $60, respectively. For each asset, the expected annualized price change is $1 in

both states.

[Insert Figure 3 about here.]

16 An alternative ‘risk-parity’ strategy is to size the position in each asset to be inversely related to its standard deviation
rather than its variance as we do here. This can be rationalized in a mean-variance framework by assuming that all return
correlation coefficients are zero and that relative Sharpe ratios are identical across asset classes, i.e.,

µi,s

σi,s
= cs for every asset

class i. In that case the mean-variance efficient portfolio becomes ms = (γΣs)−1µs = cs vec( 1
γσi,s

). See Asness, Frazzini and

Pedersen (2012) for further discussion. The insights we develop in our example apply to any type of ‘risk-based’ asset allocation
that implies deleveraging of the more volatile assets when risk increases.
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We illustrate in Fig. 3 how the aim portfolio in state s starts to deviate significantly from the risk parity

portfolio as the transaction costs in state s′ increase. We see that, in the high-risk state, the aim portfolio

remains very close to the risk-parity portfolio even for large values of η. Intuitively, the aim portfolio in

the high-risk state is close to the Markowitz portfolio because, when the economy transitions to the low-risk

state, you can quickly trade out of that portfolio and towards the optimal portfolio. It is only in the low-risk

state that it is optimal to deviate significantly from the risk-parity weights, because there you must anticipate

the transition to the high-risk state where transaction costs are large. Indeed, in the low-risk state, the

aim-portfolio weights for both assets in are lower than their weights in the Markowitz portfolio, and these

weights decrease with increasing cost of trading in the high-risk state.

[Insert Figure 4 about here.]

Trading speeds for all assets are plotted in Fig. 4. As we can see, trading speed decreases in the high-risk

state and increases in the low-risk state when transaction costs in the high-risk state are increasing. That is,

the more costly it becomes to trade assets in the H-state, the more aggressively we have to trade assets in the

low-risk state. We note that trading speeds are not security specific in this experiment, because we assume

that the price impact matrix is a constant multiple of the covariance matrix.

4. A Regime Switching Model for Returns

Following much of the literature (e.g., GP; Litterman, 2005) the model presented in Section 2 assumes

that, conditional on a state, the covariance matrix of price changes is constant. This leads to a very tractable

solution because the resulting conditional aim portfolio is constant in the number of shares of each asset,

and thus is independent of any changes in the prices of these assets. Thus, until there is a transition to a

new state, once an investor has traded to the aim portfolio, she won’t need to rebalance this portfolio when

prices change. Unfortunately the assumption of a constant price-change covariance matrix, which results in

a Gaussian-normal distribution for prices, is both implausible for common stock returns—as such a model

permits prices to fall below zero—and is inconsistent with the data. Empirically, returns are much better

described by a conditionally log-normal distribution. Fortunately, in our framework a log-normal model, that

is one in which the conditional expected return and return covariance matrix is constant in a given state, is

very tractable. In this section, we present a regime-switching model formulated in returns and dollar-holdings

as opposed to price-changes and number of shares. In our empirical analysis in Section 5 we apply this model

to timing the market portfolio while accounting for time-varying transaction costs and stochastic volatility.
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4.1. Formulation

We have N risky assets and collect the N -dimensional vector of returns from period t to t+1 in rt+1 ≡ dSt

St
.

The net return vector has the following state-dependent mean and covariances:

E[rt+1] = µ(st)

E[(rt+1 − µ(st))(rt+1 − µ(st))
>] = Σ(st),

where µ(st) and Σ(st) are, respectively, the N -vector of expected returns and the N × N covariance matrix

of returns. Both µ and Σ are a function of a state variable st which follows a Markov chain with transition

probabilities πs,s′ .

Since the model is set up in dollars, the investor rebalances at the end of each period again in dollars. If

the dollar trade vector is given by ut, then the dollar holdings of the investor have the following dynamics:

xt+1 = diag(1 + rt+1)xt + ut+1 (8)

= diag(Rt+1)xt + ut+1, (9)

where the gross returns are given by Rt+1.

We consider the optimization problem of an agent with the following objective function with an infinite

investment horizon:17

max
xt

E

[ ∞∑
t=1

ρt−1
{
x>t µ(st)−

1

2
γx>t Σ(st)xt −

1

2
u>t Λ(st)ut

}]
. (10)

The agent chooses her dollar holdings xt in each period t so as to maximize this objective function. Specifically,

at the end of period t − 1, the agent holds xt−1 dollars. At this point the agent observes the state st, and

trades ut dollars to bring his dollar holdings to diag(Rt)xt+ut. We again consider a linear price impact model.

The total (dollar) cost of trading ut is 1
2u
>
t Λ(st)ut.

4.2. Value functions and optimal portfolio

For simplicity, we consider a two-state Markov chain model, with statesH and L. The model is straightforward

to generalize to multiple states. In our empirical application in Section 5 we consider two-state and four-state

models. Using the dynamic programming principle, the value function V (xt−1, Rt, st) satisfies

V (xt−1, Rt, s) = max
xt

(
x>t µs −

1

2
u>t Λsut −

γ

2
x>t Σsxt + ρEt [V (xt,1 + µs + εs, z)]

)
,

17 In the Internet Appendix, as discussed in footnote 9 we provide two ways to micro-found this objective function.
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where E [εs] = 0 and E
[
εsε
>
s

]
= Σs. We guess the following quadratic form for our value functions:

V (x,R, s) = −1

2
x> diag(R)Qs diag(R)x+ x> diag(R)qs + cs,

where Qs is a symmetric N ×N matrix and qs, cs are N -dimensional vectors of constants for s ∈ {H,L}. We

can now simplify Et [V (xt,1 + µs + εs, z)] using the assumed structure for the value functions and write it in

the form of − 1
2x
>
t Asxt + x>t bs + ds where

Zs = E[(1 + µs + εs) (1 + µs + εs)
>

] = Σs + (1 + µs) (1 + µs)
>
,

As = πs,s(Zs ◦Qs) + πs,s′(Zs ◦Qs′),

bs = πs,s(µs ◦ qs) + πs,s′(µs ◦ qs′),

ds = πs,scs + πs,s′cs′ ,

and ◦ denotes element-wise multiplication. Using this expression for Et [V (xt,1 + µs + εs, z)], we obtain

V (xt−1, Rt, s) = max
xt

{
x>t µs −

1

2
(xt − diag(Rt)xt−1)

>
Λs (xt − diag(Rt)xt−1)− γ

2
x>t Σsxt

− ρ

2
x>t Asxt + ρx>t bs + ρds

}
.

Thus, we maximize the quadratic objective − 1
2x
>
t Jsxt + x>t j

s
t + ks where we define

Js = γΣs + Λs + ρAs

js = Λs diag(Rt)xt−1 + µs + ρbs

ks = −1

2
x>t−1 diag(Rt)Λs diag(Rt)xt−1 + ρds.

Then, the optimal xt when the state is s is given by J−1s js. That is to say

xt = (γΣs + Λs + ρAs)
−1

(Λs diag(Rt)xt−1 + µs + ρbs) . (11)

The value achieved at the optimal solution is given by 1
2j
>
s J
−1
s js + ks and we obtain the following coupled

matrix equations:

Qs = −Λs (γΣs + Λs + ρAs)
−1

Λs + Λs, (12)

qs = Λs (γΣs + Λs + ρAs)
−1

(µs + ρbs) , (13)

cs =
1

2
(µs + ρbs)

> (γΣs + Λs + ρAs)
−1

(µs + ρbs) + ρds. (14)

19



Overall, these equations are very similar to those obtained in the previous section for the regime-switching

model of price changes. The main difference is the need to introduce the matrices As and bs which are nonlinear

transformations of Qs and qs. We solve for Qs and qs iteratively from Eqs. (12) and (13), respectively. We

use the zero matrix for Qs and the zero vector for qs as initial guesses. Convergence is obtained very rapidly

in all of our implementations.

4.3. Aim portfolio and trading speed

Following our analysis in the previous section, we define the aim portfolio in each state, aims, as the

portfolio at which it would be optimal not to rebalance given the current state s. The following lemma

characterizes the aim portfolio and the trading speed.

Lemma 3. The conditional aim portfolio aims at which it is optimal not to rebalance is given by

aims = (γΣs + ρAs)
−1

(µs + ρbs) .

It maximizes the value function V (xt−1, Rt, s) with respect to xt−1 diag(Rt).

The optimal trading rule is to “trade partially towards the aim” at the trading speed τs = Λ−1s Qs:

xs = (I − τs) diag (Rt)xt−1 + τsaims.

Proof. Maximizing the value function at time V (xt−1, Rt, s) with respect to diag (Rt)xt−1 we obtain:

aims = Q−1s qs.

Substituting from the definitions in Eqs. (12) and (13) we obtain:

aims =
(
−Λs (γΣs + Λs + ρAs)

−1
Λs + Λs

)−1 (
Λs (γΣs + Λs + ρAs)

−1
(µs + ρbs)

)
=
(
− (γΣs + Λs + ρAs)

−1
Λs + I

)−1
(γΣs + Λs + ρAs)

−1
(µs + ρbs)

= (γΣs + ρAs)
−1

(µs + ρbs)

where the last equality obtains by noting that if we define the matrix

M =
(
− (γΣs + Λs + ρAs)

−1
Λs + I

)−1
(γΣs + Λs + ρAs)

−1

then

M−1 = (γΣs + Λs + ρAs)
(
− (γΣs + Λs + ρAs)

−1
Λs + I

)
= (γΣs + ρAs) ,

which immediately implies that M = (γΣs + ρAs)
−1

.
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To prove the second part of the lemma, we start from the definition of the optimal position xt given in

Eq. (11). It is straightforward to obtain the optimal trade

xt − diag(Rt)xt−1 = Λ−1s (γΣs + ρAs)(aims − xt).

Using the definition of matrix M above and Eq. (12), we obtain the formula for the trading speed.

4.4. Difference between two models

[Insert Figure 5 about here.]

Fig. 5 compares aim portfolios and trading speeds in models set up in shares (i.e., conditionally normal

price distributions) and dollars (i.e., conditionally log-normal price distributions) for an example with a single

risky asset, and with high and low volatility states H and L. Table 2 displays all of the model parameters.

We calibrate the model to an initial share price of one dollar so that the y-axis represents both the dollar

investment and the number of shares in the aim portfolio.

For the “shares” model of this section, the aim portfolio weight on the risky asset is smaller than in the

“dollars” model of Section 2, in which price changes are conditionally normally distributed. Moreover, this

difference increases with the expected return on the risky asset. The intuition underlying this finding is that,

conditional on remaining in the same state, the dollar amount in the risky asset is constant. Thus, following

positive returns, some amount of the risky asset must be sold off to rebalance to the aim portfolio. The lower

position in the risky asset anticipates this future costly rebalancing by holding a lower position in the risky

asset when the risky asset is expected to perform well.

[Insert Table 2 about here.]

We also observe that the trading speed is higher for the regime-switching model of returns than for that of

price changes. This is because, in the regime-switching model of returns, there is an additional “rebalancing

motive” for trading, as dollar positions drift away from their target as a result of return shocks (even in the

absence of any change in the investment opportunity set).

5. Empirical application

In this section, we implement our methodology using the modeling framework in dollars and illustrate that

there are economically significant benefits using our approach both in-sample and out-of-sample.

5.1. Model Calibration

We use daily value-weighted market returns of all firms in Center for Research in Security Prices (CRSP)

from 1967-03-13 to 2017-03-31 to estimate a regime-switching model.18 The data are downloaded from Ken

18 This time period corresponds to 50 years of data when each year is assumed to have 252 trading days.
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French’s data library.

Guidolin and Timmermann (2006) consider a range of values for the number of states and find that a

four-state regime model performs better in explaining bond and stock returns. Following this study, we

estimate a Markov switching model with four states to describe the dynamics of market returns:

rt+1 = µ(st) + σ(st)εt+1 (15)

where st = {1, 2, 3, 4} and εt+1 are serially independent and drawn from standard normal distribution. State

transitions occur according to a Markov chain and we denote by Pij the probability of switching from state i

to state j.19

[Insert Table 3 about here.]

Table 3 displays the estimates of the model.20 All coefficients are statistically significant at 1% level.

Overall, we observe that the rank correlation between the estimated expected returns and volatilities is not

equal to one. We observe that the expected return can be lower in a high-volatility state. This pattern

has been found since the initial applications with regime switches on equity returns (see, e.g., Hamilton and

Susmel, 1994).

[Insert Figure 6 about here.]

For each regime i, Fig. 6 illustrates the probability that the trading day t is in regime i conditional on

the full return sample. These probabilities are referred to as “smoothed” probabilities in the regime-switching

literature (Kim, 1994).21 The first regime highlights the good states of the return data with high return and

low volatility corresponding to the highest Sharpe ratio. This regime has also the highest expected duration

with roughly 51 trading days. The transition from this state usually occurs to the second state with slightly

lower expected return and higher volatility. The expected duration for this state is 30 trading days. The

third state is a distressed state with low expected return and high volatility. This state has the lowest Sharpe

ratio and has an expected duration of approximately 33 trading days. The final state covers the crisis periods

with very high expected return and very high volatility. We observe that it covers trading days around the

1987 crash, the dot-com bubble, and the financial crisis. This state is relatively short-lived with an expected

duration of roughly 15 trading days.

19 To restrict the number of parameters, we have also tried fitting a four-state model that constrains the general model to
having only two mean and volatility coefficients (i.e., mean or volatility may remain unchanged after a transition) as opposed to
four but this constrained model can be rejected with a likelihood test.

20 We use the MS Regress toolbox in Matlab for the estimation of the model (Perlin, 2015).
21 In the Internet Appendix, Fig. A.1 illustrates the color-coded regime of each trading day by identifying the state with the

highest probability.
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5.2. Calibration of the transaction costs

To calibrate the transaction cost multipliers of our model realistically, we use proprietary execution data

from the historical order databases of a large investment bank. The orders primarily originate from institutional

money managers who would like to minimize the costs of executing large amounts of stock trading through

algorithmic trading services. The data consist of two frequently used trading algorithms, volume-weighted

average price (VWAP) and percentage of volume (PoV). The VWAP strategy aims to achieve an average

execution price that is as close as possible to the volume-weighted average price over the execution horizon.

The main objective of the PoV strategy is to have constant participation rate in the market along the trading

period.

[Insert Table 4 about here.]

The execution data cover Standard & Poors (S&P) 500 stocks between January 2011 and December 2012.

Execution duration is greater than five minutes but no longer than a full trading day. Total number of orders

is 81,744 with an average size of approximately $1 million. The average participation rate of the order, the

ratio of the order size to the total volume realized in the market, is approximately 6%. Table 4 reports further

summary statistics on the large-order execution data.

According to our quadratic transaction cost model, trading q dollars in state j would cost the investor

λjq
2. Since each of our executions are completed in a day, we can uniquely label each execution originating in

one of the four states by setting it to the state with maximal smoothed probability. With this methodology,

we find that 22,946 executions are in regime 1, 41,898 executions in regime 2, 14,502 executions in regime 3,

and 2,398 in regime 4. Compared to other states, regime 4 has a relatively small number of executions due to

its short-lived nature. At first sight, it is surprising that we have the largest number of executions in regime

2. But, during the 2011—2012 period, the volatility was relatively high so there are actually fewer trading

days in regime 1.

Our execution data have information on both the order size and total trading cost. Total trading cost is

computed by comparing the average price of the execution to the prevailing price in the market before the

execution starts. This is usually referred to as implementation shortfall (IS) (Perold, 1988). Formally, IS of

the ith execution is given by

ISi = sgn (Qi)
P avg
i − Pi,0
Pi,0

, (16)

where Qi is the dollar size of the order (negative if a sell order), P avg
i is the volume-weighted execution price

of the parent-order, and Pi,0 is the average of the bid and ask price at the start-time of the execution. Thus,

total trading cost in dollars is equal to ISi×Qi. According to our model, this is given by λm(i)Q
2
i where m(i)

maps the ith execution to the state of the trading day. Thus, we can estimate λj for each state by fitting the
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following model:

ISi = λ1Qi1{m(i)=1} + λ2Qi1{m(i)=2} + λ3Qi1{m(i)=3} + λ4Qi1{m(i)=4} + εi.

[Insert Table 5 about here.]

Table 5 illustrates the estimated coefficients. The reported standard errors are clustered at the stock and

calendar day levels. We observe that λ estimates are all highly significant (except in state 4 where we observe

fewer executions in our data set) and vary a lot across regimes and tend to increase with volatility. We find

that λ3 is the largest across all states. Recall that this state has the lowest Sharpe ratio and thus can be

interpreted as the distressed state. Using Wald tests pairwise, we find that the estimate of transaction costs

in this distressed state, λ3, is statistically higher than all other coefficients at a 10% significance level.

[Insert Table 6 about here.]

To better understand the variation in transaction costs across our states, we present in Table 6 the average

values of various liquidity proxies in each state. We find that bid-ask spreads, mid-quote volatility, and

turnover are increasing across states, i.e., volatility. However, the Amihud illiquidity proxy returns similar

ranking to the estimated λ coefficients with state 3 being more illiquid than state 4. Since volume is much

larger in that state, it may act as a mitigating factor on trading costs (see, e.g., Admati and Pfleiderer, 1988;

Foster and Viswanathan, 1993).

Since we would like to estimate the price impact of trading the market portfolio, our estimates may be

overestimating the cost as it is based on the complete set of S&P 500 stocks. In order to address this issue,

we rerun our regressions only using data corresponding to the top 10% of stocks with respect to market

capitalization. We believe that this universe of stocks reflects a more natural comparison to the market

portfolio.

The second column of Table 5 illustrates the estimated coefficients for this liquid universe. We observe

that the coefficients are lower by a factor between two and three but preserve the same ranking across states.

In this case, λ3 is statistically different than the coefficients of the first and second state at 10% significance

level. The second panel of Table 6 illustrates the average values of each liquidity proxy in each regime using

this universe of large-cap stocks.

5.3. Objective function

We use the regime-switching model based on dollar holdings and returns presented in Section 4 as the

investment horizon is very long. Formally, the investor’s objective function is:

E

[ ∞∑
t=0

ρt
{
xtµ(st)−

1

2
λ(st)u

2
t −

γ

2
σ2(st)x

2
t

}]
(17)
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where xt = xt−1(1 + rt) + ut and st ∈ {1, 2, 3, 4}. We calibrate ρ so that the annualized discount rate is 1%.

We set γ = 1× 10−10 which we can think of as corresponding to a relative risk aversion of 1 for an agent with

$10 billion dollars under management. We assume that the investor starts from zero holdings and rebalances

daily.

The optimal portfolio policy of the investor is given by

xoptt (st) = (1− Q(st)

λ(st)
)(1 + rt)x

opt
t−1 +

Q(st)

λ(st)
aim(st) ∀st ∈ {1, 2, 3, 4} (18)

where q and Q solve the following system of equations ∀s ∈ {1, 2, 3, 4}:

Q(st) = −λ(st)
2
(
γσ2(st) + λ(st) + ρ

(
σ2(st) + (1 + µ(st))

2
)
Q(st)

)−1
+ λ(st), (19)

q(st) = (µ(st) + ρµ(st)q(st))

(
1− Q(st)

λ(st)

)
, (20)

aim(st) = Q(st)
−1q(st). (21)

Since we have only one asset, the trading speed is one-dimensional and given by Q(st)
λ(st)

in each state.

5.4. Aim portfolios and trading speed

[Insert Figure 7 about here.]

Using the estimated model coefficients, we first study the aim portfolios across states in the presence and

absence of transaction costs. Fig. 7 illustrates the aim portfolios for the optimal policy in these cases. We also

compare this optimal policy with a simple unconditional mean-variance benchmark, in which the portfolio

rule holds a constant dollar amount equal to
µavg

γσ2
avg

in the risky asset. Here, µavg and σ2
avg are the sample mean

and variance of the market returns from 1967-03-13 to 2017-03-31.

In the left panel, the solid line illustrates the aim portfolios in the absence of transaction costs. Without

transaction costs, aim portfolios are simply the conditional mean-variance optimal Markowitz portfolios.

Compared to the unconditional mean-variance constant benchmark portfolio, the conditional Markowitz

portfolio is very aggressive in regime 1 and holds a smaller amount than the constant portfolio in all other

states. In regime 3, the holdings are very close to a risk-free position.

In the right panel, we plot the aim portfolios when there are stochastic trading costs. We use the estimated

transaction cost multipliers from the liquid subset as provided in Table 5. Surprisingly, regime 4 has the

smallest aim portfolio whereas regime 3, the lowest Sharpe ratio state, has slightly higher holdings. This

is due to differences in trading costs, as well as to the transition probabilities, across states. For example,

trading costs are largest in regime 3, thus the optimal aim portfolio, which will determine trading in that

state, should depend on the average positions expected in states that it will transition from, essentially regime

4 (probability of ≈ 6%) and regime 2 (probability of ≈ 1%), as well as from states it will transition to, again

regime 2 (probability of ≈ 2%) and regime 4 (probability of ≈ 1%). These considerations make the desired
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holdings in regime 3 higher. Interestingly, the aim portfolios in regime 3 and regime 4 hold a larger position

in risky assets than the corresponding conditional Markowitz portfolios, whereas the aim portfolio in regime 1

actually holds a much smaller position than the conditional Markowitz portfolio. This emphasizes the impact

of transaction costs and potential transitions between states on desired holdings.

[Insert Figure 8 about here.]

Finally, we plot the trading speeds in each regime in Fig. 8. Due to high volatility, regime 4 has the highest

trading speed. Regime 1 has the lowest trading costs so we find that the trading speed is relatively larger

compared to regime 2 and regime 3. However, the difference is not very large as these other states have higher

volatilities. Regime 3 has the lowest trading speed potentially due to its highest trading costs.

5.5. In-sample analysis

In this section, we evaluate the performance of the optimal policy using the in-sample estimates from our

four-state regime-switching model. We compare it to various benchmark policies in the presence and absence

of transaction costs to help to develop an understanding of the potential benefits of this methodology. In

Section 5.7, we repeat this exercise with a full out-of-sample analysis to better quantify these benefits.

In order to evaluate the performance of the policies, we need to assign each trading day to a regime state

so that we can determine the appropriate values of σ2(st) and λ(st). For this purpose, we use the smoothed

probabilities from the regime-switching model and assign the regime of each trading day to the state with the

highest smoothed probability. We skip a day to implement the optimal and myopic policies. That is to say,

to determine the position on day t, we use the smoothed probabilities from day t− 1.

Let xoptt be the optimal policy as computed from Eq. (18) and the above implementation methodology.

We break down the realized objective function into two terms, wealth and risk penalties:

W opt
T =

T=12600∑
t=1

ρt
[
xoptt rt+1 −

1

2
λ(st)

(
xoptt − xoptt−1Rt

)2]
(22)

RP opt
T =

T=12600∑
t=1

1

2
ρt
[
xoptt σ(st)

]2
. (23)

Here, t = 12601 corresponds to the final trading day of 2017 Q1.

5.5.1. Benchmark policies

As described earlier, the first benchmark policy is the constant-dollar rule in which the investor chooses

xcont =
cµavg

γσ2
avg

. The parameters, µavg and σ2
avg, are obtained using the full in-sample data. We choose c so that

the policy has the same risk exposure as the optimal policy, i.e., the discounted sum of risk penalties from

this policy equals RP opt
T . In the presence of trading costs, getting into a large constant position in the first

period may result in large trading costs, so to minimize this effect we allow this policy to build the constant

position in the first ten trading days with equal-sized trades.
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The second benchmark policy is the buy-and-hold portfolio in which the investor invests x0 dollars into

the market portfolio at the beginning of the horizon.22 We provide a slight advantage to this benchmark

policy by assuming that he builds this position with no trading costs. The investor never trades till the end

of the investment horizon. We again optimally choose x0 so that the policy has the same risk exposure as the

optimal policy.

The third benchmark policy is the myopic policy with transaction cost multiplier, a widely used practitioner

approach. This approach solves a myopic mean-variance problem, that is, given some initial position (xt−1) and

the state st, rt, it solves maxut xtµ(st)− 1
2γσ(st)

2x2t− 1
2hu

2
tλ(st) subject to the dynamics xt = xt−1(1+rt)+ut.

The myopic policy with transaction cost multiplier h is given by

xmy
t (st) = (1− τ(st))(1 + rt)x

my
t−1 + τ(st)

µ(st)

γσ2(st)
∀st ∈ {1, 2, 3, 4} (24)

τ(st) =
1

1 + hλ(st)
γσ2(st)

. (25)

Note that this policy, like the optimal one, trades partially towards an aim portfolio. However, since it takes

the current state as given and ignores the implications of any future transitions in the state, the aim portfolio

is the conditional mean-variance efficient Markowitz portfolio and the trading inertia, 1− τ(st) ≈ hλ(st)
γσ2(st)

, only

depends on the ratio between current state’s transaction costs and the variance. We choose h so that the

myopic policy uses the optimal trading speed τ∗(st) in each regime. Note that in this case, the risk penalties

will not be the same. Further, in the absence of transaction costs, the myopic policy is optimal, thus, we

compare it to the optimal one only in the presence of transaction costs.

5.5.2. Comparison between portfolio policies

[Insert Figure 9 about here.]

Fig. 9 compares the optimal policy to the constant portfolio in the absence of trading costs. Both policies

have the same risk penalty by construction (see bottom-right panel), thus the wealth dynamics are direct

measures of performance. The top-left panel illustrates that the optimal policy has a much higher performance.

We observe that this is achieved by trading more and timing the regimes of the return data. This confirms

that there is predictability and that, at least in the absence of transaction costs, there is value to rebalancing

across the estimated regimes.

[Insert Figure 10 about here.]

Fig. 10 compares the optimal policy to the buy-and-hold portfolio in the absence of trading costs. Both

policies again have the same risk penalty by construction. In the top-right panel, the starting position for the

buy-and-hold policy is roughly $3 × 109. Since this policy never trades, the position becomes very large at

22 We assume that the investor shorts the risk-free asset to generate this initial capital so he also starts from zero wealth.
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the end of the horizon which causes this policy to take much higher risk. This policy performs worse than the

constant portfolio for that reason. Since there are no trading costs, the constant portfolio maintains the same

level of position costlessly and manages the risk exposure better.

[Insert Figure 11 about here.]

Fig. 11 compares the optimal policy to the constant portfolio in the presence of trading costs. Both policies

again have the same risk penalty by construction. Top-left panel illustrates that the difference in performance

is more pronounced in the presence of trading costs. One reason for this is the excessive trading of the constant

portfolio policy as illustrated in the medium-left and bottom panels. Compared to the previous case, we note

that the optimal policy trades much more slowly as shown in the medium-right panel. The constant policy

trades a lot after large return shocks in order to keep a constant dollar amount invested in the market portfolio.

Therefore, the constant-dollar policy incurs much larger cumulative transaction costs than the optimal policy

as we see in the bottom panel, which contributes a significant portion of the observed wealth difference between

the two strategies.

[Insert Figure 12 about here.]

Fig. 12 compares the optimal policy to the buy-and-hold portfolio in the presence of trading costs. They

both have the same risk penalty by construction. In the top-right panel, the starting position for the

buy-and-hold policy is roughly $1.4× 109. This policy performs better than the constant portfolio in this case

as it never incurs trading costs. We note that the buy-hold policy is very slowly moving in building the position

as it can never get out of the position to manage risk. This becomes the main driver of underperformance

compared to the optimal policy.

[Insert Figure 13 about here.]

Finally, Fig. 13 compares the optimal policy to the myopic policy with transaction cost multiplier. Both

policies have the same trading speeds but different aim portfolios. Since the risk penalties are not the same,

wealth dynamics are not the main performance metric in this case. For this reason, we also include the

cumulative objective value which equals the difference between wealth and risk penalties. The performance

difference as illustrated by objective values in the bottom-right panel is again substantial. The main driver

seems to be excessive trading of the myopic policy. Since the myopic portfolio uses the conditional Markowitz

portfolio as its aim position, it ends up trading a lot especially in the good state. Taking large positions, it

also induces large risk penalties. This example shows the importance of accounting for the future dynamics

of the state variables as this generates the difference between the aim portfolios of both policies.

5.6. Large vs. small portfolios

Managing transaction costs effectively will be very important when the portfolio size is large. In the

absence of transaction costs, we know that the myopic portfolio, i.e., the conditional Markowitz portfolio, is
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optimal. Therefore, when the portfolio size is small, the difference between the optimal policy in the presence

of transaction costs and the myopic portfolio may be very small. Since we are using realistic parameters, our

model can also speak to the level of portfolio size at which managing transaction costs would provide significant

benefits. For example, with γ = 1× 10−10 we observe that our aim portfolios range from approximately $20

billion to $85 billion dollars.

[Insert Figure 14 about here.]

Fig. 14 compares the optimal policy to the myopic policy when γ = 1 × 10−5. In this case, the top-right

panel tells us that the maximum aim portfolio across states is roughly $2.8 million and in this case, there is

no significant difference between performances.

[Insert Figure 15 about here.]

Fig. 15 compares the optimal policy to the myopic policy when γ = 2.5 × 10−8. With this calibration,

the aim portfolios range from approximately $20 million to $900 million. We observe that the myopic policy

diverges a lot from the optimal policy by trading a lot and taking too much risk. It returns negative objective

value and near-zero wealth levels. Thus, this simple exercise suggests that when the portfolio size is on the

order of a hundred million dollars, taking price impact into account is crucial.

5.7. Out-of-sample analysis

The in-sample analysis of Section 5.5 is useful in studying the expected properties and benefits of a

fully dynamic portfolio policy, but to better assess the value of the regime-switching model, we perform an

out-of-sample analysis. We implement a two-state regime-switching model in this section for faster estimation

of the parameters as we need to estimate a regime-switching model every day from 1967 to 2017.

5.7.1. Calibration

[Insert Table 7 about here.]

First, we estimate the model parameters to determine the parameters of the objective function. We use all

the available market return data from 1926-07-01 to 2017-03-31. Table 7 presents the estimated coefficients.

We again observe that the expected return is lower in the high-volatility state. The “good” state with higher

expected return and low volatility is again more persistent.

[Insert Table 8 about here.]

We estimate the transaction cost regimes using the same methodology, but now with two regimes. We

again use the estimates from the liquid subset, i.e., the 50 stocks with largest market capitalizations. Formally,

we run the following regression:

ISi = λ1Qi1{m(i)=1} + λ2Qi1{m(i)=2} + εi.
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Table 8 illustrates the estimated coefficients. We observe that λ estimates are all highly significant. We find

that λ2 is greater than λ1 and this difference is statically significant. Regime 2 has the lowest Sharpe ratio

and thus can be interpreted as the distressed state.

5.7.2. Objective function

The estimated two-state regime-switching model and the calibrated transaction costs will determine the

parameters of the out-of-sample objective function. Let x be any given policy. We will compute the

out-of-sample performance of this policy by W (x)−RP (x) where

W (x) =

T=12600∑
t=1

ρt
[
xtrt+1 −

1

2
λ(st) (xt − xt−1Rt)2

]
(26)

RP (x) =

T=12600∑
t=1

1

2
ρtx2tσ

2(st), (27)

and st will be equal to the state with the larger smoothed probability at time t, and σ and λ will be given by

the calibrations in Table 7 and Table 8 (the liquid column), respectively.

The investor is not aware of the true parameters of the model and uses only information up to trading day

t in order to make a trading decision for day t+ 1, i.e., no policy will be able to use any forward looking data.

5.7.3. Optimal policy

We construct our policy based on our theoretical analysis as follows. We will label this policy as the

“optimal” policy as it is based on our dynamic model. First, we estimate a two-state regime-switching model

using the market return data from 1926-07-01 to 1967-03-10. We use these estimated parameters to construct

a trading policy as formulated by Lemma 3. To apply our trading rule, we need to predict the regime of the

next trading day. To accomplish this, we re-estimate a two-state regime-switching model using return data

from 1926-07-01 to the decision date. This estimation will provide smoothed probabilities for every trading

day including the decision date. We will predict the next trading day’s regime using the state with the larger

smoothed probability. For example, suppose that regime 1’s smoothed probability for decision date is 0.52

and regime 2’s smoothed probability for decision date is 0.48. We will predict the next trading day to be of

regime 1.

5.7.4. Benchmark policies

We will use the constant portfolio and buy-and-hold portfolio as the benchmark policies.

We construct the constant portfolio policy in the out-of-sample data as follows. First, we estimate µavg and

σavg using the market return data from 1926-07-01 to 1967-03-10. These parameters are held fixed throughout

the investment horizon. The investor then constructs the following constant portfolio: xcont =
cµavg

γσ2
avg

. We

choose c so that the policy has the same risk exposure as the optimal policy.
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The buy-and-hold portfolio is constructed similarly to its in-sample counterpart. The investor invests x0

dollars (borrowed at the risk-free rate) into the market portfolio at the beginning of the investment horizon,

i.e., on the first trading day (1967-03-13), and then never trades but cumulates returns from its risky and

risk-free asset positions. We choose x0 so that the policy has the same total risk exposure as the optimal

policy.

A set of figures that illustrate the out-of sample performance of the trading rules are presented in the

Internet Appendix to this paper. Figs. A.2 and A.3 compare the optimal policy to the constant portfolio and

to the buy-and-hold portfolio, respectively, when trading costs are zero. The top-left panel illustrates that the

optimal policy has higher performance in terms of terminal wealth. The results show that the regime-switching

model captures predictability out-of sample and that it is valuable, even absent transaction costs, in timing

these regimes.

Figs. A.4 and A.5 compare the optimal policy to the constant portfolio and the buy-and-hold portfolio,

respectively. The top-left panel illustrates that the difference in performance is more pronounced in the

presence of trading costs. The constant policy immediately rebalances to the constant weights following

any return shock, resulting in large realized transaction costs and a far lower overall performance. We can

see that the difference in cumulative transaction costs paid by both strategies is very large and that this

difference contributes substantially to the difference in wealth generated by both strategies. This hints to an

interesting insight, which we confirm in our analysis in Section 5.8: even if expected return regimes are difficult

to measure, leading to a smaller out-of-sample performance in the absence of transaction costs (t-costs), if

transaction cost regimes are more accurately measured, which is plausible since t-costs vary with second

moments, then optimally accounting for the variation in volatility and transaction costs will lead to a sizable

improvement in performance.

An interesting feature of the buy-and-hold portfolio is that it builds its position very slowly but ends up

with a very large position at the end of the sample which increases the total risk. In the top-right panel of

Fig. A.5, the starting position for the buy-and-hold policy is roughly $4.7 × 109. This is substantially lower

than the aim portfolio of the optimal policy in the low-volatility state.

Overall, this out-of-sample analysis illustrates that the outperformance of the optimal policy is robust to

parameter uncertainty of the regime-switching model.

5.8. Which parameter should you time?

In this section, we investigate the value of timing each switching parameter of the general model. The

switching parameters are µ, σ, and λ. It is well-known, at least since Merton (1980), that expected returns are

estimated less precisely than volatilities. Further, Moreira and Muir (2017) have shown that there are gains

to scaling down the risky asset exposure in response to an increase in the market’s variance, which suggests

that the conditional mean of the market moves less than one-for-one with its variance. One might thus expect

that out-of-sample the benefits of timing changes in volatility could be larger than timing changes in expected
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returns. We show some evidence to that effect below. Further, since transaction costs vary with volatilities,

we also provide quantitative evidence about the value of timing transaction cost regimes.

We use the the implementation of the optimal policy from the out-of-sample analysis to account for

the potential bias introduced by imprecisely estimated parameters. First, we study the value of timing the

switches in either volatility or expected returns in the absence of trading costs. In this analysis, if the investor

times volatility, he takes into account that the volatility is time-varying between two states but assumes that

expected return is constant throughout the investment horizon and is given by µavg (as in the case of the

constant portfolio rule). Similarly, if the investor times expected returns, he models them as time-varying

between high and low states and internalizes the potential switches in the expected return in his trading rule

but he assumes that the volatility stays constant at a level of σavg (as in the case of the constant portfolio

rule). We scale the policies so that they take the same risk.

In the Internet Appendix, we present a set of figures that illustrate the results of this exercise. Fig. A.6

compares these two timing approaches in the absence of trading costs using an out-of-sample trading approach.

We scale both policies so that they both have the same risk exposure as the optimal policy that times both

parameters. We find that timing volatility provides much higher performance. The terminal wealth of the

policy that only times volatility is actually higher than the terminal wealth of the optimal policy that times

both parameters as shown in Fig. A.2. This illustrates that trying to time expected returns may be actually

detrimental in an out-of-sample trading strategy. The top-right panel shows that the µ-timing policy has a

wider range of positions compared to the range observed in the σ-timing policy. In the absence of t-costs

the strategies switch to their conditional mean-variance Markowitz portolios in every state. Recall that the

estimated mean in the state 2 is negative and the volatility is high. This implies that the µ-timing strategy,

which underestimates the volatility in that regime, takes a very large short position in the risky asset. This

hurts the out-of-sample performance of the strategy relative to the volatility timing strategy, probably because

the negative expected return in those states is not precisely estimated.

If there are trading costs in the model, then λ will be switching through time between high and low

transaction cost regimes. If an investor does not time the switches in λ, then the investor uses an unconditional

average of λavg which is estimated from running the following regression in the liquid subset:

ISi = λavgQi + εi

where Qi is the dollar size of the order. We estimated λavg to be 0.766× 10−10 which is between λ1 and λ2,

as expected.

Now we consider combined timing strategies: Timing σ and µ, timing σ and λ or timing µ and λ. In all

three timing strategies, the left-out parameter is set to its unconditional average. We consider the comparison
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across these policies in two different assumptions of γ: high risk-aversion and low risk-aversion.23 Fig. A.3

compares these three policies in the presence of transaction costs in the high risk-aversion case. We observe

that the top performing policy times σ and λ and the worst performing policy times σ and µ.

Figure A.8 compares these three policies in the low risk-aversion case. We again observe that the worst

performing policy times σ and µ but the underperformance is economically smaller. This underscores that the

benefits from timing volatility and transaction costs become more important when the size of the portfolio is

large.

6. Conclusion

In this paper, we develop a closed-form solution for the dynamic asset allocation when expected returns,

covariances, and price impact parameters follow a multi-state regime-switching model, and when the investor

has a mean-variance objective function. We derive an optimal trading rule which is characterized by a set of

aim portfolios and trading speed vectors. Specifically, the aim portfolio is a weighted average of the conditional

Markowitz portfolios in all potential future states. The weight on each conditional Markowitz portfolio depends

on the likelihood of transitioning to that state, the state’s persistence, the risk, and transaction costs faced

in that state compared to the current one. Similarly, the optimal trading speed is a function of the relative

magnitude of the transaction costs in various states and their transition probabilities. One of the significant

implications of our model is that the optimal portfolio can deviate substantially from the conditional Markowitz

portfolio in anticipation of possible future shifts in relative risk and/or transaction costs.

We show that the model is equally tractable when either price changes or returns follow a regime-switching

model. The latter aligns better with the empirical dynamics of asset returns. We utilize this framework

to optimally time the broad value-weighted market portfolio, accounting for time-varying expected returns,

volatility, and transaction costs. We use a large proprietary data set on institutional trading costs to estimate

the price impact parameters. We find that trading costs vary significantly across regimes and tend to be higher

as market volatility increases.

We test our trading strategy both in-sample and out-of-sample and find that there are substantial benefits

to the use of our approach. For the out-of-sample test, the state probabilities are estimated using only data

in the information set of an agent on the day preceding the trading date. We compare the performance

of our optimal dynamic strategy to various benchmarks: a constant-dollar investment in the risky asset, a

buy-and-hold portfolio, and a myopic policy with optimal trading speeds borrowed from the optimal solution.

Our dynamic strategy outperforms all of these alternatives significantly. Out-of-sample, the benefits of timing

volatility and transaction costs dominate those of timing expected returns, especially when assets under

management are sizable.

23 Note that in the absence of trading costs, changing the coefficient of risk-aversion would not matter, as the wealth values
will just be scaled by the ratio of the risk-aversion parameters.
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Fig. 1. Aim portfolio for the corporate bond example. Left panel plots the shares invested in the Corporate and
Treasury in the aim portfolio in the high- and low-volatility states as the Corporate trading cost varies in the high-risk
state. The formula for the aim portfolio is stated in Theorem 1. The right panel plots the conditional Markowitz
portfolio in each state for direct comparison. All parameter values are provided in the left panel of Table 1.
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Fig. 2. Trading speed for corporate bond example. This plot gives the diagonal values of the trading speed matrix in
each state (τs = Λ−1

s Qs) as a function of Corporate trading cost in the high-risk state. The formula for the trading
speed matrix is derived in Theorem 1. All parameter values are provided in the left panel of Table 1.
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Fig. 3. Aim portfolio for risk-parity example. We plot the number of shares of the safe and risky asset in the aim
portfolio for each volatility state, as a function of the transaction cost (T-cost) multiplier in the high-risk state, η.
Note that ΛH = ηΣH . The formula for the aim portfolio is stated in Theorem 1. The right panel plots the conditional
Markowitz portfolio in each state for direct comparison. All parameter values are provided in the right panel of Table 1.
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Fig. 4. Trading Speeds for the risk-parity experiment. This plot gives the diagonal values of the trading speed
matrix in each state (τs = Λ−1
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ΛH = ηΣH . The formula for the trading speed matrix is derived in Theorem 1. All parameter values are provided in
the right panel of Table 1.
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Fig. 5. Aim portfolios and trading speeds in models set up in shares and dollars. This figure compares the aim
portfolios and trading speeds in two-state models set up in shares and dollars. The initial asset price is set to $1 so
that the models are directly comparable, i.e., expected returns and expected price changes are the same. Parameter
values are given in Table 2. We report the aim portfolios and trading speeds in the high-risk state as a function of the
expected return in that state.
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Fig. 6. Estimated state probabilities. We use daily value-weighted market returns of all firms in CRSP data set from
1967-03-13 to 2017-03-31 to estimate a four-state regime-switching model. The data are downloaded from Ken French’s
data library. The four plots illustrate the probability that the trading day t is in regime i conditional on the full return
sample.
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Fig. 7. Unconditional Markowitz portfolio and aim portfolios with and without trading costs. In the left panel,
trading costs are assumed to be zero, thus the aim portfolio is equal to the conditional Markowitz portfolio. We also
plot the unconditional Markowitz portfolio which we label as the “Constant” portfolio. In the right panel, trading
costs are positive and we use trading cost multipliers as set in Section 5.2. The coefficient of risk-aversion is given by
γ = 1 × 10−10 (can be thought of as corresponding to a relative risk-aversion of 1 for an agent with $10 billion dollars
under management).
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Fig. 9. This figure compares the in-sample performance of the optimal policy with a constant-dollar portfolio in the
absence of trading costs. Both strategies start from zero-wealth. Constant portfolio is equal to the scaled unconditional
Markowitz portfolio so that the policy has the same risk exposure as the optimal policy (as shown in the bottom-right
panel). Top-left panel shows the cumulative wealth of each policy which is the main comparison metric. Top-right
panel shows each strategy’s dollar position in the market fund. Bottom-left panel illustrates the change in position due
to the rebalancing of the strategy.
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Fig. 10. This figure compares the in-sample performance of the optimal policy with a buy-and-hold portfolio in the
absence of trading costs. Both strategies start from zero-wealth. Buy-and-hold portfolio invests x0 dollars into the
market fund at the beginning of the horizon. We scale x0 so that the policy has the same risk exposure as the optimal
policy (as shown in the bottom-right panel). Top-left panel shows the cumulative wealth of each policy which is the
main comparison metric. Top-right panel shows each strategy’s dollar position in the market fund. Bottom-left panel
illustrates the change in position due to the rebalancing of the strategy.
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Fig. 11. This figure compares the in-sample performance of the optimal policy with a constant-dollar portfolio in the presence
of trading costs (TC). Both strategies start from zero-wealth. Constant portfolio is equal to the scaled unconditional Markowitz
portfolio so that the policy has the same risk exposure as the optimal policy (as shown in the center-right panel). Top-left panel
shows the cumulative wealth of each policy which is the main comparison metric. Top-right panel shows each strategy’s dollar
position in the market fund. Center-left panel illustrates the change in position due to the rebalancing of the strategy and the
bottom panel illustrates the cumulative cost of these trades.
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Fig. 12. This figure compares the in-sample performance of the optimal policy with a buy-and-hold portfolio in the presence
of trading costs. Both strategies start from zero-wealth. Buy-and-hold portfolio invests x0 dollars into the market fund at the
beginning of the horizon. We scale x0 so that the policy has the same risk exposure as the optimal policy (as shown in the
center-right panel). Top-left panel shows the cumulative wealth of each policy which is the main comparison metric. Top-right
panel shows each strategy’s dollar position in the market fund. Center-left panel illustrates the change in position due to the
rebalancing of the strategy and the bottom panel illustrates the cumulative cost of these trades.
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Fig. 13. This figure compares the in-sample performance of the optimal policy with a myopic policy in the presence of trading
costs. Both strategies start from zero-wealth. We adjust the myopic policy so that it has the same trading speed as the optimal
policy. Top-left panel shows the cumulative wealth of each policy. Top-right panel shows each strategy’s dollar position in the
market fund. Center-left panel illustrates the change in position due to the rebalancing of the strategy and the bottom-left panel
illustrates the cumulative cost of these trades. Bottom-right panel shows the realized objective value of each strategy, which is
the main comparison metric, by subtracting the risk penalty from the wealth generated.
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Fig. 14. This figure compares the in-sample performance of the optimal policy with a conditional Markowitz portfolio for a
small investor (γ = 1 × 10−5) in the presence of trading costs. Recall that conditional Markowitz portfolio is optimal in the
absence of trading costs. Both strategies start from zero-wealth. Top-left panel shows the cumulative wealth of each policy.
Top-right panel shows each strategy’s dollar position in the market fund. Center-left panel illustrates the change in position due
to the rebalancing of the strategy and the bottom-left panel illustrates the cumulative cost of these trades. Bottom-right panel
shows the realized objective value of each strategy, which is the main comparison metric, by subtracting the risk penalty from
the wealth generated.
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Fig. 15. This figure compares the in-sample performance of the optimal policy with a conditional Markowitz portfolio
for a medium-size investor (γ = 2.5 × 10−8) in the presence of trading costs. Recall that conditional Markowitz
portfolio is optimal in the absence of trading costs. Both strategies start from zero-wealth. Top-left panel shows the
cumulative wealth of each policy. Top-right panel shows each strategy’s dollar position in the market fund. Center-left
panel illustrates the change in position due to the rebalancing of the strategy and the bottom-left panel illustrates the
cumulative cost of these trades. Bottom-right panel shows the realized objective value of each strategy, which is the
main comparison metric, by subtracting the risk penalty from the wealth generated.



Table 1
Parameter values for corporate bond and risk-parity examples.
This table reports the parameter values used in the numerical experiments described in Sections 3.1 and 3.2. Trading is

daily, and L denotes the low-risk state and H denotes the high-risk state. Reported values of expected price-change, µ,
and price-change covariance matrix, Σ, are annualized for each state. Λ denotes the price impact matrix in each state.
γ denotes the coefficient of risk-aversion and ρ is the discount rate. πLL (πHH) denotes the transition probability of
remaining in the low-risk (high-risk) state. The initial prices for all assets are $100. In the left panel, the first (second)
row in µ, Σ, and Λ corresponds to the Corporate (Treasury). In the right panel, the first (second) row in µ, Σ, and Λ
corresponds to the “safe” (“risky”) asset.

Corporate bond example Risk-parity example
Parameter Value Parameter Value

γ 10−8 γ 10−8

ρ 0.9996 ρ 0.9996
πLL 0.95 πLL 0.95
πHH 0.9 πHH 0.9

µL

[
10
8

]
µL

[
1
1

]
µH

[
12
16

]
µH

[
1
1

]
ΣL

[
100 50
50 100

]
ΣL

[
100 0
0 900

]
ΣH

[
900 450
450 900

]
ΣH

[
400 0
0 3600

]
ΛL

[
1.25× 10−8 0

0 10−8

]
ΛL 5× 10−8ΣL

ΛH

[
Variable 0

0 10−8

]
ΛH (Variable) ηΣH



Table 2
Parameter values for the price-change and return models compared in Section 4.4.
This table presents the parameter values used in the comparison between price-change and return models in Section 4.4,

the results of which are plotted in Fig. 5. The initial price for the risky asset in both settings in $1. Trading is
daily and L denotes the low-risk state and H denotes the high-risk state. The expected price-change/return (µ) and
price-change/return variance (Σ) are daily. Λ denotes the price impact matrix in each state. γ denotes the coefficient
of risk-aversion and ρ is the discount rate. πLL (πHH) denotes the transition probability of remaining in the low-risk
(high-risk) state.

Parameter Value Parameter Value

γ 5× 10−8 µH (Variable)
ρ 0.9996 ΣL

[
0.40× 10−4

]
πLL 0.98 ΣH

[
3.33× 10−4

]
πHH 0.9 ΛL

[
2× 10−10

]
µL

[
0
]

ΛH
[
3× 10−10

]



Table 3
Parameter estimates for a four-state regime-switching model.

This table presents estimates of the model parameters presented in Eq. 15 using daily value-weighted CRSP market
return data from 1967-03-13 to 2017-03-31. The data are downloaded from Ken French’s data library. All parameter
estimates are statistically significant at 1% level.

Parameter Estimate Parameter Estimate
µ1 0.0864% σ1 0.5512%
µ2 0.0340% σ2 0.9372%
µ3 0.0069% σ3 1.6032%
µ4 0.2939% σ4 3.9178%
P11 0.9804 P12 0.0196
P13 0.0000 P14 0.0000
P21 0.0250 P22 0.9670
P23 0.0080 P24 0.0000
P31 0.0000 P32 0.0233
P33 0.9693 P34 0.0074
P41 0.0016 P42 0.0000
P43 0.0635 P44 0.9350



Table 4
Summary statistics for the main attributes in the execution data.

The execution data cover S&P 500 stocks between January 2011 and December 2012. Participation rate is equal
to the ratio of the executed volume to total volume during the lifetime of the order. The volatility of the asset is
estimated using the mid-quote prices. Order duration is expressed as a fraction of full trading day (i.e., 6.5 hours).
Implementation shortfall (IS) is expressed in basis points (bps).

Statistic Mean Min Pctl(25) Median Pctl(75) Max

Order value ($ M) 0.967 0.001 0.094 0.396 1.102 158.300
Participation rate 0.061 0.00001 0.002 0.013 0.102 1.000
Volatility 0.014 0.0002 0.008 0.011 0.016 0.344
Order duration 0.384 0.013 0.041 0.153 0.851 1.000
IS (bps) 4.095 -1006.000 -16.440 4.075 25.080 996.600



Table 5
Transaction cost estimates in each regime for the four-state regime-switching model.
λn denotes the transaction cost multiplier in regime n. The second column reports the results from a liquid subset

in which we only include executions from stocks within the top 10% in market capitalization. Estimated values are
multiplied by 1010. Standard errors are double-clustered at the stock and calendar day levels. ∗ denotes p < 0.1; ∗∗

p < 0.05; and ∗∗∗ denotes p < 0.01.

Dependent variable: IS
All stocks Liquid

λ1 1.688∗∗∗ 0.501∗∗

(0.459) (0.217)
λ2 1.725∗∗∗ 0.793∗∗∗

(0.195) (0.189)
λ3 3.037∗∗∗ 1.506∗∗∗

(0.418) (0.352)
λ4 2.274 0.935

(1.927) (1.329)



Table 6
Average liquidity proxies in each regime.

The second column reports the averages from a liquid subset in which we only include executions from stocks within
the top 10% in market capitalization. Standard errors, in parentheses, are double-clustered at the stock and calendar
day levels. ∗∗∗ denotes p < 0.01

All stocks Liquid
Spread Volatility Turnover Amihud Spread Volatility Turnover Amihud
(bps) (%) (×10−8) (bps) (%) (×10−8)

1 3.80∗∗∗ 1.11∗∗∗ 3.51∗∗∗ 1.37∗∗∗ 2.89∗∗∗ 1.01∗∗∗ 2.93∗∗∗ 0.47∗∗∗

(0.04) (0.02) (0.12) (0.06) (0.03) (0.02) (0.11) (0.02)
2 3.95∗∗∗ 1.23∗∗∗ 3.58∗∗∗ 1.59∗∗∗ 2.98∗∗∗ 1.13∗∗∗ 3.02∗∗∗ 0.55∗∗∗

(0.04) (0.02) (0.13) (0.06) (0.03) (0.02) (0.10) (0.02)
3 4.95∗∗∗ 1.92∗∗∗ 4.27∗∗∗ 1.97∗∗∗ 3.52∗∗∗ 1.77∗∗∗ 3.63∗∗∗ 0.67∗∗∗

(0.09) (0.06) (0.20) (0.08) (0.07) (0.06) (0.19) (0.04)
4 5.62∗∗∗ 2.84∗∗∗ 7.37∗∗∗ 1.80∗∗∗ 3.97∗∗∗ 2.59∗∗∗ 6.42∗∗∗ 0.59∗∗∗

(0.39) (0.28) (2.07) (0.34) (0.27) (0.25) (1.07) (0.12)



Table 7
Parameter estimates for the two-state regime-switching model.

This table presents estimates for the parameters governing the two-state regime-switching model based on using daily
value-weighted CRSP market return data from 1926-07-01 to 2017-03-31. The data are downloaded from Ken French’s
data library. All parameter estimates are statistically significant at 1% level.

Parameter Estimate Parameter Estimate
µ1 0.0841% σ1 0.6110%
µ2 -0.0955% σ2 1.8886%
P11 0.9866 P12 0.0134
P21 0.0431 P22 0.9569



Table 8
Transaction cost estimates for the two-state regime-switching model.

Transaction cost estimates for each regime are estimated for the two-state regime-switching model. λn denotes the
transaction cost multiplier in regime n. The second column reports the results from a liquid subset in which we only
include executions from stocks within the top 10% in market capitalization. Estimated values are multiplied by 1010.
Standard errors, in parentheses, are double-clustered at the stock and calendar day levels. *** denotes p < 0.01.

Dependent variable: IS
All stocks Liquid

λ1 1.772∗∗∗ 0.579∗∗∗

(0.255) (0.166)
λ2 2.299∗∗∗ 1.254∗∗∗

(0.311) (0.335)
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