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1. Introduction

The power of mean reversion tests has long been a tacit issue of the market
efficiency literature. Early tests of market efficiency, as summarized in Fama
(1970), found no economically significant evidence of serial correlation in stock
returns. However, Summers (1986) later suggested that this was because these
tests lacked power: Summers suggested a model of “fads” in which stock prices
take long swings away from their fundamental values, and showed that even if a
fads component such as this accounted for a large fraction of the variance of
returns, the fads behavior might be difficult to detect by looking at short horizon
autocorrelations of returns as these early tests had done.

The intuition behind Summers reasoning was that if stock prices took large
jumps away from their “fundamental” or full-information values, and then only
reverted back towards the fundamental price over a period of years, the autocorre-
lations of monthly or daily returns would capture only a small fraction of this
mean reversion.

Severa attempts were made to develop tests that would have greater power
against “fads” hypotheses such as Summers'. Fama and French (1988a) used a
long horizon regression of multi-year returns on past multi-year returns, and
Poterba and Summers (1988) used a variance ratio test to look for fads-type
behavior in stock-index returns. In addition, variance ratio test are used by
Cochrane (1988) and Lo and MacKinlay (1988) to investigate the time series
properties of production and short horizon returns.
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Both Fama and French and Poterba and Summers develop intuition for why
these long horizon tests should have more power to detect fads type behavior, and
some effort has since been made to both verify and formalize thisintuition. Lo and
MacKinlay (1989) use Monte-Carlo methods to compare the power of the variance
ratio, Box—Pierce Q, and the Dickey and Fuller (1979) r-tests. Jegadeesh (1990)
used the approximate slope method (Badahur, 1980; Geweke, 1981) to evaluate
the power of a generalized long horizon regression, and Richardson and Smith
(1991) use this method to evauate the power of the variance ratio test and long
horizon regression against specific alternatives. Hodrick (1992) and Campbell
(1992) propose similar analyses for multivariate tests.

However, these papers are all comparisons of power across a discrete set of
tests and for a specific mean reverting alternative; none presents a method for
determining the most powerful test or suggests how far their tests might be from
optimal for the specified aternative. Moreover, little or no intuition is provided as
to the robustness of these results with respect to changes in the aternative
hypothesis.

In this paper, we develop a methodology for determining asymptotic test
power. This method allows us (1) to determine the most powerful test against a
specified aternative; (2) to determine the distance of a test from the optimal test
using an analytical measure of test power and (3) to determine the implicit
alternative to any test. Moreover, the straightforward geometric interpretation of
test power we present facilitates consideration of test robustness issues.

It is important to note here that what we present a method for constructing an
optimal test once the alternative hypothesis has been determined. We do not treat
the problem of actualy specifying the alternative hypothesis, which is very
difficult problem, and is probably the reason that so many ad hoc tests have been
used in the finance field. Nonetheless, in the debates over what type of test is
appropriate, test power is often an issue that is ignored, or is addressed using
Monte-Carlo methods that are not robust to small changes in the alternative
hypothesis. The method we present here does allow us to address those questions.

The methodology we develop is applicable to all moment restriction tests where
the instrument is a linear combination of past returns. This class encompasses the
long horizon regression test, the variance ratio test, weighted spectral tests
(Durlauf), and instrumental variable and generalized method of moments (GMM)
tests involving past returns.

Since our analytical test-power results are valid only asymptotically and under
local alternatives, we validate these results for small sample and nonlocal aterna
tives using Monte-Carlo experiments. We find that the asymptotic results extend

! The implicit alternative of a test is that alternative against which the test is the most powerful,
which we shall discuss later.
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well to small samples but also show that two asymptotically equivalent tests may
have different small sample properties.

This test-power determination method extends naturally to the consideration of
joint tests of moment restrictions. This issue is of importance in the finance
literature: in attempting to characterize a time series of returns, a common
approach in the finance literature is to run a set of tests in order to determine the
time series properties of the returns series. For example, Fama and French run a
set of eight long horizon regressions at return horizons of 1, 2, 3, 4, 5, 6, 8 and 10
years. Poterba and Summers (1988) perform variance ratio tests for similar
horizons. Both find evidence of mean reversion at some horizons. However, as
Richardson (1993) points out, the significance of these results must be based on
the joint significance of all tests. Richardson and Smith (1991) suggest calculating
the joint significance by forming a y?2 statistic where the variance—covariance
matrix of the sample regression coefficients is calculated under the null hypothe-
sis. A similar approach is adopted by Jegadeesh (1990) and others.

However, we show that a y? joint test of this form will have very low power,
even if the individual tests are all powerful against the alternative.

One way of interpreting the Fama and French and Poterba and Summers testsis
that a number of horizons were used because the researchers had the dternative
that returns were mean reverting, but were unsure of the degree of persistence of
the mean reverting component. They, therefore, studied a set regressions (or
variance ratios) that bounded the range of mean reversion rates they expected to
see, and estimated the rate of mean reversion by determining the return horizon at
which the regression coefficient was most significant. This would have been a
statistically correct procedure had they corrected for the fact that they had
searched over a large number of regression coefficients. This would have been
similar to a procedure in which the mean reversion coefficient was estimated from
the data, and then, using this parameter estimate (for example in a GMM setting),
a test was conducted of whether the variance of the mean reverting component
was significantly different from zero. While a test such as this would have power
that is independent of the number of regressions run, the power of the y? test of
the joint significance of the regression coefficient decreases as the number of
regressions (variance ratios) increases. Thus, this method of testing is inherently
statistically weak. This result is verified using Monte-Carlo Studies.

Finally, since our analytical test-power results are valid only asymptotically and
under local aternatives, we also conduct Monte-Carlo experiments to investigate
the robustness of these results for small sample sizes and for nonlocal alternatives.
We find that the results are generally robust, but we also explore situations where
the asymptotic theory will lead to incorrect conclusions. We extend the results of
this section to show how small differences in the small sample properties of a test
can lead to strikingly different statistical inferences. We show that the long
horizon regression, which uses analytical standard errors as proposed by Richard-
son and Smith (1991), suffers from low power against sSimple mean reverting
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alternatives, and that this, not poor small properties, is the reason Richardson and
Stock (1989) find no evidence of mean reversion using this test. We empirically
calculate the small-sample corrected distribution for the Fama and French T-statis-
tics, which are based on Hansen and Hodrick (1980) calculated standard errors,
and show that there is till a good deal of evidence in favor of a mean reversion
hypothesis. We show why a test based on the Hansen /Hodrick based T-statistic is
more powerful even though the two test are asymptotically equivalent.

We proceed by showing that al of these are asymptotically equivalent to
weighted autocorrelation tests, and develop the result that, for univariate tests, the
most powerful test statistic is that which is a weighted sum of sample autocorrela-
tions at different lags, for which the weights are proportional to the expected
autocorrelation under the alternative hypothesis.

The intuition behind this method is straightforward, and is based on the fact
that under the null hypothesis, the vector of sample autocorrelations at different
lags is asymptotically mean zero, and is multivariate-normally distributed with a
variance—covariance matrix Q =(1/T)-1. In other words, sample autocorrela
tions at different 1ags have the same variance and are uncorrelated. If one changes
the hypothesis from the null to the local aternative hypothesis (Davidson and
MacKinnon (1987)) (i.e., if the serial correlation is small), the mean of the sample
autocorrelation vector will shift in the direction of the alternative but the variance
covariance matrix of sample autocorrelations will remain the same. Given these
null and alternative autocorrelation distributions, we show that the most powerful
test statistic is a linear combination of sample autocorrelations where the weight-
ing vector is proportional to the vector of expected sample autocorrelations.

One of the virtues of writing these tests as weighted autocorrelation tests is that
it leads to simple geometric interpretation of test power, which we provide in
Section 2.3. We show in Section 2.5.1 that the weighted autocorrelation test can
just as easily be written in the spectral domain as a weighted periodigram test,
with an analogous result that the optimal test will have weights proportional to the
expected periodigram under the alternative. This test has same optimality proper-
ties as the weighted autocorrelation test.

We aso show another version of the optimal test is one tests the orthogonality
of the current return to the optimal predictor of the current return, based on the
alternative hypothesis.

Two other papers explore the topic of determining an optimal test. Faust (1992)
presents a method for determining the optimal filtered variance ration test based
on maximum likelihood methods. Perhaps most closely related to this paper is
Richardson and Smith (1994), which develops a general method for determining
the optimal test given a mean-reverting aternative. Using the approximate slope
method as a measure of test power, Richardson and Smith reach conclusions on
the optimal test statistics, which are similar to those we present in Sections 2.1 and
2.2. In addition, Richardson and Smith compare the power of their optimal test for
the Summers’ fads alternative to the long horizon regression test, to the variance
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ration test, and to the Jegadeesh (1990) regression both asymptotically (using the
approximate slope measure) and in small-samples using Monte Carlo methods.

The paper is organized as follows. Section 2 devel ops the weighted autocorrela
tion test and proves its optimality, and extends this development to the spectral
domain and to calculation of the optimal instrument. Section 3 demonstrates the
equivalence of commonly used mean reversion tests to weighted autocorrelation
tests, and investigates their optimality and the implicit alternatives of these tests.
Section 4 extends the analysis to joint test of restrictions, and Section 3.4 presents
Monte-Carlo results on the small sample power of the tests. Section 5 reexamines
the Fama and French (1988b) long horizon test for mean reversion in light of this
evidence. Section 6 concludes the paper.

2. The optimal univariate tests—the weighted autocorrelation test

In this section, we derive the asymptotic properties of the weighted autocorrelo-
gram test and show that this test is asymptotically a uniformly most powerful test
against alocal alternative for which the return generating process can be described
by an ARMA model. By uniformly most powerful, we mean that for any
significance level (or probability of Type | error) selected by the econometrician,
the probability of Type Il error is minimized. We also provide a simple geometric
illustration of the power of the test.

2.1. The local alternative hypothesis

We begin with a Pitman sequence of local data, or return, generating processes
(DGPs):

1

F=p+aT & +0, (2.1)
where u, and a, are given by

G, ~ 11D(0,07) El* = n,0,' <= (2.2)

6(L)& = ¢(L)E (23)

& ~1D(0,0.%) E€*=m o < (2.4)

E(T&_,)=0Vr (2.5)

¢(L) and 6(L) are finite-order lag polynomias, and #(z)/[(1—2)0(2)] has
roots outside the unit circle.

This return is seen to be composed of two components, the {i component,
which is a differenced martingale, and the a or “alternative” component, which
has as ARMA representation. We assume that the correlation of €, and u, is zero.?

2 This assumption is not critical in that any ARMA process for returns can be decomposed in this
way.
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a is the parameter which determines how close the local alternative is to the null
hypothesis of white noise returns. Notice that null hypothesis is nested within the
aternative in the sense that when « = 0 the null is true, and when « is any value
other than zero, the aternative is true. Here, the return generating process under
the null hypothesis is alowed to be nonnormal, but must have a finite fourth
moment.>
Eg. (2.1) represents a sequence local DGPs: as the sample size of T increases,
the variance of mean-reversion component grows smaller. The factor of T~/ in
the return generating process is chosen so that, given a fixed size, the power of the
test will converge to some value in (0, 1) as T — %.* In the interest of tractability,
we must deal with asymptotic power, that is the power of the test T — oo.
However, if we were to increase T without changing the importance of the
mean-reverting component, the power would always goto oneas T — oo, To alow
asymptotic power analysis, it is necessary to modify the alternative hypothesis as
T grows, to move it “closer” to the null so that the asymptotic probability of
rejection under this local DGP is in (0, 1). As we show later, this type of
convergence will occur only with an exponent of —1/4.
Given the definitions in Egs. (2.1)—(2.5), the covariogram of the returns series
r, is given by:
s tan 1 L d(De(ZY
CT E[a’(a‘l+7] O, fF 9(2)0(2—1) ZdZ (26)

where I' is the unit circle in the complex plane. We write the autocorrelation
estimator for the r, series as:

o

KK

12

—2r.r

T tht—17

- (2.7)
?El‘tz

o

Expanding the numerator yields:

T 1 7
thftﬂ:;z aT a+
t=1

t=1

¢, =

=l =

® Richardson and Smith (1991) also show that their optimal test is robust to limited kinds of
heteroskedasticity.

“ In the work of Davidson and MacKinnon (1987) and others concerning local aternative hypothe-
ses, thisis usually afactor of T~1/2. However, thisis in a regression framework where only the DGP
for the dependent variables varies with T. In our framework, where returns are both the dependent and
independent variables, we want the product of these two to move towards the null at a rate of T~/2,
s0 each part individually must move at the rate of T~1/4,



K. Daniel / Journal of Empirical Finance 8 (2001) 493-535 499
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i [T7°]
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+ aT _Za'tut—f + _Za1—7ut (28)
T t T t
Zrloo|T
az a
By Eg. (A.3), the first term has an expected value of ~ and a variance of

‘/T
(a*/T?uv,, =0T ?). By Eq. (A.4), the second term has a mean that is
asymptotically zero and a variance of ¢,'T~*. The expectation of the last term is
zero since 0, and &, are mean zero and independent. The asymptotic variance of
this term is therefore:

5

—a’T 'E Z(afufﬁa“uﬂzawufaw)]

t

2 2
=a’T (2To/of + 2Tofcs,) = 2a%0,*T (02 +¢3,)=0,

T

2

(2.9)

The plim; _, . of the denominator is 0,2 while, based on the central limit theorem,
the numerator tends to a sum of normally distributed random variables. Given this,
the distribution of the sample autocorrelation is given by:

asy

. a’c? 1
P~

T
The covariance of the autocorrelation estimator at different lags is obtained by
performing term by term multiplication of the three in the expansion of the

(2.10)
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expansion of the covariance estimator €_ in Eq. (2.8). Denote these three terms by
A,, B, and C_. We then have that

+A,-C +B,-C +C,-C,
Independence of T and & plus assumption (2.2) guarantees that the expectations of

the A-C, B-C and B - B- terms are zero. Expansion of theC C. in a manner
similar so that in Eq. (2.9) above yields:

E[C, €]

2a? .

- - M2y 35 M2 030N
_mE[a’[+sa’[+Tut+a‘[—sa‘[+Tut+a1+5a1—7ut+a’[—sa’[—7ut

asy2aa'
T (e ,+ci,)

and from Eq. (A.3), the expectation of the remaining term, A A —(a 4/T)cac
is asymptotically:
4

~ ~ o
A - A — —cict
T

eQ/oz4

E = ?UST

TS

and summing the last two terms gives:

asy2aa'

Cov(¢&,.&,) =E[¢,&] —E[&.]E[&] = (c2 ,+cd))

T2
which is O,(T~*/*). Combining this result with the fact that plim; .. of the
denominator of Eq. (2.7) is ;2 and with Eq. (2.8) yields:

asy
VT~

a’c?
2 ,|) (2.11)

u

2.2. The weighted autocorrelogram test statistic

We now proceed to find the most powerful test. We proceed by first deriving
the optimal test among the class of tests that are linear functions of autocorrela-
tions, and then showing in Section 2.4 that this linear test is optimal among all
functions of the autocorrelations. Since the autocorrelations (plus the variance)
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summarize the properties of any series that has an ARMA representation, this test
will be globally optimal.
We define the weighted autocorrelogram test statistic as:

A= (XT:WTﬁT) (2.12)

where, without loss of generality, the length of the vector of weightsis normalized
to one:

Ywr=1 (2.13)
From Egs. (2.7) and (2.11) we have that:
0[2

A~ 1
Aa?l'/V 1 ZWT o ? ZWTZ
E T T

2
o, T

~asy
VT A~

a2
—ZZWch,l) (2.14)
O-U T

Notice that both the mean and the variance of the distribution of VTA are
independent of T. This means that the probability of rejection as T — = isin (0,
1). Had we written the DGP in Eq. (2.1) with an exponent of T~1/4, this would
not have been the case.

If our aternative hypothesis does not suggest a sign for «, we will use the test
statistic TA?, which based on Eq. (2.14), has anoncentral x? distribution with one
degree of freedom and with noncentrality parameter NCP.

at 2
NCP= — (ZWTCTE") (2.15)
O-U T

Since under the null hypothesis (« = 0) this statistic has a central x? distribution,
to maximize the power of the test under the local alternative represented by the &,
DGP in Eq. (2.1), the weight w; must be chosen to maximize the noncentrality
parameter (NCP), subject to normalization constraint that the sum of the squares of
the weights equals 1.

The intuition behind this result is illustrated in Fig. 1, where Xf density
functions with NCPs of 0, 2, and 4 are plotted. Since the test statistic TA? for any
set of weights satisfying Eq. (2.13) has a central y? distribution under the null, a
single critical value will give all tests the same size. For example, a critical value
of y* = 3.84 gives dl tests a size of 5%. Maximizing the power of the test is then
equivalent to choosing the test for which it is most likely that the test statistic will
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P

7%12)

— @

Cutoff Value (x™)

Area = 0.05
Fig. 1. Test power as a function of the noncentrality parameter.

exceed the critical value of 3.84 given the alternative is true. In other words, we
need to find the value of the NCP which maximizes the integral

[ X2(NCP)(x)dx

X
Because a y 2 distribution with a larger NCP first-order stochastically dominates a
x?2 with alower NCP, the test which has the highest NCP will always maximize
this integral, regardless of the size or critical value we choose.
To determine the set of weights which maximizes the NCP, we solve the
Lagrangian:

Z=)Ywcd— A(wa - 1)

Taking the first-order conditions gives the optimal weights:

0.7 . c
ow, T2A
0.Z
—=0=>)Yw'?=1
0= L

or, simplifying:
Ca
W= ———

5
T a2
CT
\/ r
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That is, the optimal weights are proportional to the autocorrelation expected under
the alternative hypothesis.

Note also that, given a set of weights, we can recover the implicit aternative of
a test, which is the alternative against which the test has the greatest possible
power. This can be useful in providing some intuition as to what sort of
alternatives a given test will have power against. In Sections 3.1 and 3.3, we will
examine the implicit alternatives of variance ratio and long horizon regression test
statistics.

Finally, the power of a weighted autocorrelogram test against a specified
aternative can be summarized by the parameter

2
(Zwer]
cos?W=—"T (2.16)
Se](oe]
Using this parameter, the NCP as given in Eg. (2.15) can be written as:
o)
NCP= ————cos’¥
g,

u

The geometric interpretation of this test statistic is explored in the next section
(Section 2.3). From this equation it is clear that when the value of cos? ¥ is 1, the
test will be an optimal test, and when the value is zero, there will be no power
against the alternative®, as will be explained in more detail in Section 2.3.

2.3. A geometric interpretation of the weighted autocorrel ogram test

Before we prove the general optimality of the autocorrelation test, it is useful to
consider a simple geometric interpretation of the test power results from the
previous section. First, note that the set of p's at different lags can be expressed as
avector in a p-dimensional space (where p is the number of nonzero weights in
the test statistics). In this coordinate system, the component of the sample
autocorrelation ( p) vector would be p'=(py, p,..., p,). Under both the null
and alternative hypotheses, the p-vector p is distributed sphericaly, that is

E[(5—E (5~ E[ )] = 7

where | is the p X p identity matrix. However, under the null hypothesis, it is
distributed about the origin and under the local aternative hypothesis p, it is

® Where by “no power”, we mean that the test has no power to discriminate between the null and
aternative, or aternatively that the distribution of the test stetistic is the same under the null as under
the dternative hypothesis.
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centered at the point T~1/%xc?, where c? isthe p-vector of alternative autocorrela-
tion, i.e, c*=(cf, c3..., cp).

The test statistic TA? = T(X_w, p)? is therefore the square of the length of the
projection of onto the vector of weights w, where w = (w,, w, ..., w,)’, based on
our restriction that the length of w is 1. The Iengtzh of this projection will be

a
normally distributed as in Eq. (2.14), with mean z_ﬁZTWT cZ. Rewriting thisin
g,
terms of the vector we have defined. We have: ’
~asy a2|Ca|
VTA~ | —
0,

u

cos¥,1 (2.17)

where ¥ is the angle between w and c?, asisillustrated in Fig. 2 and |c®| denotes
the length of the vector c® Again, the test statistic TA* will be noncentral y?
distributed with NCP = ((a*Ic??) /¢,*) cos® ¥. Thus, to maximize the NCP, we
want the vector of weights to point in the same direction as the vector of expected
autocorrelations, as this resultsin a ¥ of zero and the maximum achievable value
of cos? ¥. On the other hand, if ¥ = (7/2), then we are looking in a direction
perpendicular to that in which we expect to see deviations, and the test will have
no power.

A

P3

b1

Fig. 2. A geometric interpretation of the weighted autocorrelogram test.
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2.4. Proof of optimality for a general class of functions of autocorrelations

So far, we have only shown that this test is optimal among the class of test
which are linear functions of the set of sample autocorrelations. We now show
that this result holds for all functions of the p-vector of sample autocorrelations.
First note any test T( p): RP — {accept H,, reject H,} is a mapping from the
vector of autocorrelation to a binary choice variable. Therefore, we can describe
the test by the rejection region 2 € R", which is the set of autocorrelation vectors
p € R", which are mapped into reject.

Specifying the globally optimal test is equivalent to specifying the rejection
region Q such that the probability of Type | error is minimized. Letting f{™3(-):
R" — R denote the probability density functions under the null and the alternative
and Qdenote the complement of Q or the acceptance region, this optimization
problem can be written as:

max | f2( p)dp suchthat f'( p)dp=
Qfﬂ(p):u f(_) (p)dp=a

Differentiating the Lagrangian yields a first-order condition for maximization: that
on the boundary of the region, which we denote by { c R""?, the ratio of the
density functions under the aternative is a constant:

fo(p)

f'(p)

To prove the optimality of the linear weighted autocorrelation test, we need to
show that the manifold ¢ is defined by wip = AVp € ¢ for some w.

To show this, we note that under the assumptions given in Egs. (2.1)—(2.5), the

autocorrelation vector p is asymptotically distributed multivariate normal with a

variance—covariance matrix equal to o 2l, and that, therefore, the distributions
under the null and alternative are given by:

1

i ﬁ)=ﬁexp(—ﬁmﬁ)

= (2.18)

et

and
1 1
£ p) = ————exp| — =5 (p—p*)1(H—p)
V(2m) o? 20

where p? is the vector of autocorrelations under the alternative hypothesis. Now
define the idempotent matrix M as

|, _e¥
M_(l (pa'pa))
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With this we can write the log of the ratio of the alternative and null probability
density functions as:

~202l0g M) =(P—pYM'M(p—p?
f°(p)
. [ pPT ) .
+(p—p° —) p—p°
( ) (ppY) ( )
o
MM p+ %)5
(p7p?
which after some simplification, becomes:
fa 2 )
202log n(lj))= _of P
f'(p) P P,

We want to find the value p of which makes this equal to A. The value of p that
satisfies this restriction is:

(1=

p= ( 2 ) pa

Since this restriction is equivalent to the linear restriction derived earlier, this
means that the linear restriction is optimal.

2.5. Other forms of the optimal test

2.5.1. The spectral domain: an optimal weighted periodigram test

Durlauf (1991) proposes a spectral based method of assessing whether a time
seriesis a martingale. Basically, his method involves looking at the periodigram of
the first differences of the series: under the null hypothesis that the series is a
random walk, the expectation of the spectral density should be everywhere equal
to (0,(0)) /2. Thus, asymptotically, the periodigram should be iid with mean
(0,(0)) /27, and based on this the expectation of the function

oy =j;\(IT(w) - UXZ(:) )dw

is zero for al A under the null hypothesis. I"(A) is the “cumulated periodigram.”
By definition, it will be equal to zeroat A =0and at A = 7, and asymptoticaly,
it obeys a Brownian bridge process on [0, 1] under the null hypothesis. Durlauf
also suggests that if «“...aresearcher believes that the alternative to the martingale
model is a long-run mean reversion, maximizing test power might dictate an
examination of the low frequencies.” In this section, we show how Durlauf’'s
intuition can be formalized, and how an optimal test in the spectral domain can be
constructed.
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We show that since the periodigram can be thought of as just a representation
of the autocorrelogram in another basis, the same intuition will apply here: the
researcher should apply weights to the periodigram estimates which are propor-
tional to the expected periodigram under the aternative.

The periodigram estimate of the spectral density is given by:

1 Tt _
(o) =5- X &(i)e
27 “a-v

where 7,(j) denotes the sample autocovariogram at lag j. Since ,(j) =,(—}),
this can be rewritten as:
T-1
lr(w) = —| L a(i)(e " +e) + 6,(0)
2 i—1
Consider the following modified spectrum:

I+(w) 1 17-1 . y
|! = = (i —ijo 4 gije
T(w) &X(O) 20 20 ]glpx(J)(e € )

If we define the quantity:

f(j,0)=(€1"+e 1) =2cos( jw)
we see that the modified spectrum is given by:
1 T-1
(@) = 5= X 1(10) ()
7Tj=l
For w,=(2km)/T, ke {1, T—1}, f (-) has the following properties:
_ {O k1

E 2T k=I

if(j,wk)f(j,aq)
j=0

Using this property and the fact that, asymptoticaly,
VT~ (0))

we have that:
E[ 11 ( a)k)] =0Vk>1
0 k+#1
E[I+(wk)|+(wl)]= 1 k=]
2
2

In other words, the modified periodigram at frequencies w, = (2kw)/T, k € {1,
T — 1} is equivalent to the autocorrelogram in the sense that it is asymptotically
mean zero and serialy uncorrelated.

As an intuitive way of seeing this result, recall that, asymptotically, the vector
of p autocorrelations is spherically distributed in p-dimensional space. Fourier
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transforming the sample autocorrelations to generate the spectrum is geometrically
just transforming the vector of autocorrelations into another orthonormal basis; in
this new basis, the vector must still be spherically distributed. Thus, we see that
the basis of periodigram estimates has the same attractive properties as the
autocorrelation basis and that, in fact, we can construct a weighted periodigram
test which will have the same optimality properties as the weighted autocorrelo-
gram test. Just as for the weighted autocorrel ogram test, the weights of the optimal
test should be proportional to the expected periodigram value under the aternative
hypothesis.

2.5.2. An optimal instrumental variables test

We show in this subsection that another expression of the optimal test is a
regression in which the dependent variable is a one-period return and the indepen-
dent variable is the linear combination of past returns which is the optimal
predictor of the dependent variable, given that the alternative hypothesis is true.®

Since the orthogonality condition is based on the characteristic that under the
null hypothesis returns are not predictable using past returns, intuitively it seems
that the most powerful instrumental variables test for a given alternative would be
that for which the instrument was chosen to give the greatest possible predictive
power under the aternative. That is, the optima dependent variable should be
Elr,1Q,_,], where Q,_, isthe set of all past returns. We now demonstrate that
this intuition is correct. We do this by showing that an instrumental variables test
using the E[r,|Q,_,] as the instrument is equivalent to the optimal weighted
autocorrelation test.

The best forecast of r, given the set of past returns Q,_, will be given by the
projection of €,_, onto r,, which can be determined in a regression framework,
that is

r=px,+¢
where
M1
X = M-

® It has been noted by Hodrick (1992) that we can write any linear orthogonality condition involving
returns in this way. The test of the above orthogonality condition is equivaent to either: (1) a test of
whether a weighted average of future returns given by ©5_,w,r,, . is predictable using the returns r;
or to (2) a test of whether a weighted average of future returns Y5_ w.r,, < is predictable using the
instrument LR ,w/'r,_,, where the weights obey Y7_ _ w,w/_ =w, and where the weights are
defined in this equation so that w, =0 for s<0and s> S and w/ =0 for r <1 and r > R. These
tests are al precisely eguivaent to the weighted autocorrelogram test if the sample moment variance is
calculated under the null hypothesis and using only the single period variance. If the sample moment

variance is calculated in some other way, then the tests will still be asymptotically equivalent.
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We can use the OSL estimator of B here since under the local aternative the
residuals will be uncorrelated. Therefore,

Fe— 1l

B=(xx) (Xr)=Y(xx) *|r-2r

Given the loca-alternative assumption, we have that (X' x) = Ta.?| and therefore
that the project coefficients are

cr

1
B=— cy
(Tu .

The regression of the single period return on the optimal predictor of this return
under the alternative is therefore just a test of whether:

E(re- B'%) = 2clE(r-r,_,) =0

is zero. This is of course the same as the optional weighted autocorrelation test.

3. The power of standard test for mean reversion

We now apply the method developed in the last section to anayze three
standard mean reversion tests: the long horizon regression, the modified long
horizon regression, and the variance ratio test. We show that these are asymptoti-
cally egquivalent to weighted autocorrelation tests, calculated the vector of weight
implicit in each test, and discuss the implicit aternative of each of the tests. In
Section 3.4, we evauate the power of these relative to an optimal test using
Monte-Carlo methods.

3.1. The long horizon regression

Long horizon return regressions were used by Hansen and Hodrick (1980) to
study forward rate predictions of exchange rate movements and later by Fama and
French (1988a) to investigate autocorrection in stock returns. The intuition behind
using a long horizon regression was that such atest could capture behavior such as
the long swings proposed by Summers (1986) because, in aggregating returns, the
price movements due to the “predictable” long swings would be aggregated, while
the white noise components would be averaged out.

Consider the OLS regression coefficient ( 8) for the regression

r(tt+7)=a(r)+B(r)r(t—7,t) +e(t,t+7)
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where r (t,t + 7) represents the stock’s return from t to t+ 7. The consistent
OLS estimator of B(7) is given by

cov(r(t,t+r7),r(t—r,t))
Fi(r(t—r1,t))
We can use the linearity of the covariance operator to write the OL S regression
in Eq. (3.1) as.
2r
Y. min(s,27—s)cv(r,,r, )

- G3(r(t—r,1))

Because overlapping observations are used, the residuas of the regressions will
be correlated and the OL S standard error cannot be used. To compute the standard
error of B, Hansen and Hodrick (1980) propose estimating residual autocorrela
tions at al lags up to the return horizon (i.e.,, up to 7— 1 months), and then
calculating the standard error using a weighted sum of these autocorrelations.
Richardson and Smith (1991) propose calculating the variance—covariance matrix
for the residuas assuming the null-hypothesis is true. Both methods result in
consistent estimation of the residual variance—covariance matrix € under the
local alternative.” Given this, a consistent estimator of the variance of (38— 8)
will be:

E[(B=B)(B—B)]=(XX) "X QxX(Xx)"

where Q is the variance—covariance matrix of the residuals which, under the null
hypothesis, is a block diagonal matrix where Q; ;=0 for |i —j| > 7.
Under the local alternative we then have that:

B= (3.1)

B=

Qi,j ﬂ(fozmax('r_ || _J|,0)
" asy 27
(X'X) P XQX(X'X) ™! _>002( Y min(s, 27— 5)2)
s=0
G2(r(t—1.t)) > r0g

ay 27 min(s2r—s)
t— pT

Y. min(s,27— 5)2

s=0

" However, Richardson and Stock (1991) have pointed out that this estimator will have poor small
sample properties when the sample size is not considerably larger than the aggregation interval.
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where ¢ is the single period return variance. Thus we see that the t-statistic is
asymptotically equivalent to a weighted autocorrelation test, which has power
against an MA process with lag polynomial weights as show in Fig. 3.

3.2. The modified long horizon regression (Jegadeesh, 1990)

Jegadeesh addresses the question of the power of the Fama and French
regression against an AR(1) fads alternative such as that discussed in Section 3.4.1
of this paper. He looks at a generalized long horizon regression of the form:

Rt,t+j = a(J,K) +B(‘]'K)Rt—K,t+ €

and assesses the power of the test as a function of the parameters J and K, using
the Geweke (1981) approximate slope coefficient as a measure of the test power.
He finds that test power is maximized with J= 1 However, he also finds that the
optimal value of K is dependent on the parameterization of the fads alternative
chosen in the process given in Eq. (3.3): the closer ¢ is to 1, the greater the
optimal value of K.

The intuition for this result can be seen by referring to Fig. 6, which gives the
autocorrelogram of returns generated by the AR(1) fads model. Under the fads
alternative return, autocorrelation is negative at all lags, and is proportiona to ¢,
where 7 is the lag length. To maximize the power of the modified long horizon
regression, we need to choose J and K such that the pattern of effective weights

Coefficient

o(k)

lag (k
T 2t ®

Fig. 3. Equivalent lag polynomia weights of long horizon regressions.
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Coefficient

o(k)

i
1 s T s+t lag(t)

Fig. 4. Equivalent lag polynomial weights of modified long horizon regression.

will most closely resemble those in Fig. 6, that is choose w. to maximize X w, cZ.

The effective weights of the modified long horizon regression are given by:8
w, = max(0,min(7,J+ K- 7,J,K))

Or imposing the requirement that the sine over the squares of the weights be 1, we

have:

" max(0,min(7,J+ K —7,J,K)) (3.2)

T - Klmin( J,K)? + %(min(J,K) +2min(J,K)?)

and a plot of the normalized weights for valuesof J=1andfor J> 1 aregivenin
Fig. 4.

We determine optimal weights for a set of ¢’'s ranging from 0.95 to 0.99 and
tabulate the resultsin Table 1. Thisis done by maximizing X w, ¢ over J and K,
where w, is taken from Eq. (3.2). Note that under the AR(1) fads aternative, c? is
proportional to ¢”, so this maximization will yield an asymptotically optimal test
against the local AR(1) fads dternative. In addition to calculating these weights,
we also calculate the optimal return horizon for a Fama and French (1988a) like
regressions (where J is constrained to equal K), and calculate the value of
2.W. ¢" for these two tests and for the optimal weighted autocorrelation test,
where, for this aternative hypothesis, the optimal weights are given by

W7-= l_¢)2¢771

® Note that this is just a more general version of the equation for the long horizon regression
weights.
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Table 1

Optimal aggregation intervals and analytically calculated test power against a loca alternative for
optimal weighted autocorrelation test (WAC), modified long horizon regression (MLH regression)
(Jegadeesh, 1990), and long horizon regression (LH regression)

) WAC test MLH regression LH regression

Power Optimal (J, K) Power Optimal J Power
0.99 7.017 (1, 125) or (125, 1) 6.334 55 5.360
0.98 4.925 (1,62 or (62, 1) 4.445 27 3.779
0.97 3.990 (1,4 0r (41,1 3.601 18 3.077
0.96 3.428 (1,3Dor (31,1 3.095 14 2.655
0.95 3.042 1,25 0r (251 2.746 11 2.367

There are several apparent differences between Jegadeesh’'s results and ours,
which are explained by his use of the Geweke (1981) approximate slope coeffi-
cient as opposed to our use of a measure of local power. Note that while Jegadeesh
finds that it is optimal to aggregate the independent variable and to use a single
period return for the dependent variable, we find that either the dependent or
independent variable may be aggregated, and the other variable should be a single
period return. The reason for the differencesin the resultsis that our test is optimal
under a local alternative, while Jegadeesh determines optimality asymptotically,
but using a nonlocal aternative. To make the Geweke approximate slope coeffi-
cient equivalent to a test of alocal alternative, we need to calculate it in the limit
as the variance of the temporary component of prices relative to the variance of
the permanent component (1/¢ in Jegadeesh’s notation) goes to zero. When we
recal cul ate the approximate slope coefficient given on page 5 of Jegadeesh (1990),
we find both that the dope coefficient is the same whether the dependent or
independent variable is aggregated, and that the optimal aggregation intervals are
in agreement with those given in Table 1.

To see the reason why the Geweke approximate slope coefficient would dictate
that the independent variable be aggregated, while under the local hypothesis there
would be no difference, we can look at the regression coefficient for two
possibilities: if the dependent variable is an n period return and the independent
variable is a single period return, then the regression coefficient will be:

B= (00 (v = L jr

while the independent variableisan s period return and the dependent variableis
a single period return then the regression coefficient will be:

LoXri(tt+1)

B=(xx)"(yx) = ;l@m
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Under the null hypothesis or a local alternative, the ration of variances should be
1/s, but under a nonloca alternative hypothesis, the ratio should be greater
because of the negative autocorrelation of returns (just as the variance ratio should
be less than 1 under the fads alternative). Thus, the T-statistic, which is just 8
divided by the standard error, is more likely to be significantly greater than zero if
the independent variable is aggregated rather than the dependent.®

3.3. The variance ratio test

The variance ratio test has been used by Cochrane (1988) in testing for the
presence of a permanent component in production data, and by Poterba and
Summers (1988) and Lo and MacKinlay (1988) in testing for predictability in long
and short horizon stock returns, respectively. Additionally, Lo and MacKinlay
(1989) have investigated the size of the variance ratio test for both homoskedastic
and heteroskedastic null hypothesis, and have calculated its power relative to the
Dickey—Fuller 7-test and the Box—Pierce Q dstatistic for various alternatives
involving simple fads processes.

The variance ratio statistic for a return horizon J is the ratio of the variance of
J-period returns to J times the variance of one-period returns:

1 2
32 Zrtﬂ )
j=1

t=1

VR(J) =

_Z(rt_r)z

The intuition behind the use of the variance ratio test is that if returns are
uncorrelated, the variance of areturn of a given horizon will be proportiona to the
horizon and this ratio will be 1. If, however, transitory movementsin prices due to
fads result in positive returns regularly being followed by negative returns, short
horizon returns will exhibit a proportionally higher variance. Using a multi-layer
variance ratio test, Poterba and Summers also find evidence of mean reversion at
long horizons for real returns on common stocks over the 1926—1987 time period.

® Jegadeesh (1990) and Hodrick (1992) both point out the computational advantages of aggregating
over the independent variable in that under the null hypothesis, the regression residuals will then be
uncorrelated. However, as we have shown, it is straightforward to calculated standard error under the
null hypothesis when a regression with an aggregated dependent variable is corrected into a weighted
autocorrelation test.
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Coefficient

oK)

< o T lag®)

Fig. 5. Autocorrelation weights for variance-ratio equivalent tests.

As demonstrated by Cochrane (1988), the variance ratio statistic is equivalent
to a test whether a weighted average of autocorrelations is equal to zero:

J-1
TO-prryg I-1j|
o Bt o,

Thus, we see that the variance ratio test is precisely equivalent to a weighted
autocorrelation test in which the pattern of weights forms an inverted triangle asin
Fig. 5.

Note also that using the characteristics of the autocorrelation estimator given in
Egs. (2.7) and (2.11), one can easily show that”

2(J-1)(23-1)
3

asy
VT - VR(J)~|1,

which is in agreement with Lo and MacKinlay’s (1988) results in their Egs. (14a)
and (14b).

IG+D@j+Y

10 ysing the relation that £j_,i2 = 3
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3.4. Small sample properties of the tests

In this section, we perform a set of Monte-Carlo studies to study the small
sample size and power properties of the weighted autocorrelation test. We use as
an aternative hypothesis the AR(1) fads model of Summers (1986), which has
been used extensively in the literature of mean-reversion test power. In Section
3.4.3, we present the power comparisons among the different test.

3.4.1. The AR(1) fads alternative hypothesis

The AR(1) fads model, suggested by Summers (1986), is important from a
historical perspective in that has been widely cited and used as a basis for power
comparisons (see, e.g., Fama and French, 1988a; Poterba and Summers, 1988; Lo
and MacKinlay, 1989; Jegadeesh, 1990; Hodrick, 1992). Summers pointed out that
if stock prices were equal to the fundamental value plus a “fads” component, this
fads component might not be detected in low-order sample autocorrelations. To
some extent, this observation prompted some of the long horizon regression and
variance ratio tests, which were later carried out. However, the AR1 fads
aternative is unsatisfying in that it is a model of overreaction rather than of
rational variation in expected returns. Moreover, it implies that stock returns will
be negatively autocorrelations at al lags, and the empirical evidence suggests that
short horizon returns are positively autocorrelated.

The AR(1) fads model posits that observed stock prices (p,) embody both a
permanent component (p,"), assumed to follow a random walk a drift, and a
stationary component (u,), assumed to follow an autoregressive process of order
one:

P=p +Uu
p=p it ute, g~iid0,q?)
u=¢u_,+r, 0<¢<1y~iid0,q?) (3.3)

The persistence of the temporary component in determined by ¢, while the share
of the total variance due to the temporary component, vy, is defined by
= 20, 34
7T G2 (1+ ¢) + 207 (34
If ¢ and v, are independent, then the AR(1) fads model implies that demeaned
returns r,=Ap, — u, follow and ARMA(1,1) process (1 — ¢L)r,=(1+ 6L)w,
where:

1
0’ »
"+ (14 )

€

2
2
O,

—(1+¢2)%2—2%2+(1—¢)[4
0:

2( o'V2 + (1)0'52)
and {w,} is an uncorrelated sequence of errors with ¢,> = —($ + a,2) /6.
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Under this hypothesis, the autocavariogram and autocorrelogram for the return
generating process are given by

2
a? +ag2 forr=0
1+¢
c =
T l_¢
—g7 ¢t forr>1
1+¢
c gl (l—¢
pl=—=—-|— ( ) s|o7t forr>1 (35)
co' o (1+ @) + 20,

Plots of the autocorrelation for several different values of ¢ are provided as Fig.
6. From this figure, it is seen that the value of ¢ controls the degree of persistence
of the temporary shocks: a value of ¢ closer to 1 makes the shocks more
persistent. Note that a value of 1 would make the shocks permanent.

3.4.2. Analytical calculation of test power

Table 1 presents the analytically calculated test power values against the AR(1)
fads aternative for the weighted autocorrelation test, the modified long horizon
regression (Jegadeesh, 1990), and the standard long horizon regression. This
analytical comparison shows that, for al values of ¢, the optimal test is most
powerful, and that the modified long horizon regression is superior to the standard

0.05 - permanent/temporary variance =1
0
g
& -0.05 - Legend
& rho=0.98
& S e rho=0.97
= -0.10 N rho=0.96
'Tg‘ ...
g -0.15 7
0201 §
-0_25 A ) 1 ) 1 L 1
0 20 40 60 80 100

lag
Fig. 6. Autocorrelogram of simulated AR(1) fads model.
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long horizon regression. We next confirm these analytical results for small
samples using a Monte-Carlo experiment.

3.4.3. Monte-Carlo results

We investigate the power of four tests against this alternative: the long horizon
regression with Hansen and Hodrick (1980) calculated standard errors; the long
horizon regression with standard errors calculated under the null hypothesis
(Richardson and Stock, 1989; Richardson and Smith, 1991); the modified long
horizon regression (Jegadeesh, 1990); and a weighted autocorrelation test with
weights given by:

1-¢% . .

Wi:ﬁd)l_l for i=1,..., 180 (36)
which is optimal against the AR(1) fads alternative. All of the test statistics are
corrected for small sample bias using analytical corrections.

We use Monte-Carlo methods to calculate the size and power of the four tests.
First, we calculate the empirical size of the tests. We simulate 60,000 returns
series and compile the resulting test statistics to determine an empirical probability
distribution of the test statistic under the null, and from this distribution determine
the cutoff level for a size of 5%. We then simulate data under various parameteri-
zations of the alternative hypothesis, and again compile the test statistics into an

0.4 0.6

gamma

Fig. 7. Power comparison of weighted autocorrelation test, Jegadeesh regression, and Fama/French
regression as a function of vy, for ¢ = 0.95.
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empirica distribution. The reported empirica power is the fraction of the test
statistics which fall outside of the empirical cutoff value determined in the size
analysis.

We report Monte-Carlo determined power levels for ¢'s of 0.95 and 0.98, and
for y’sof 0.2, 0.4, 0.6 and 0.8. y, which is given in Eq. (3.4), is the proportion of
the variance due to the temporary component.

Figs. 7 and 8 give the power levels for the four tests, for the set of y's, for a
significance level of 0.05, for a persistence parameters ¢ of 0.95 and 0.98,
respectively. All power levels presented here are calculated using 20,000 simu-
lated returns series. In this and in Fig. 8, the return horizon used is that which
gives the highest power against the particular alternative being evaluated.

In this figures, note that the power level for y= 0.0 is approximately 0.05,
which is to be expected since the alternative with y = 0.0 is equivalent to the null,
and we have set the critical value so that the null will be falsely rejected 5% of the
time. As vy increases, the power increases for al tests, but more quickly for the
weighted autocorrelation test. For these parameters, the weighted autocorrelation
test is most powerful, followed by the modified long horizon regression (labeled
“Jegadeesh”), followed by the long horizon regression using Hansen and Hodrick
standard errors (labeled “FF-HH”), followed by the long horizon regression using
analytical standard errors (labeled FF-R). Except for the relation between the
FF-HH test and the FF-R test, about which our asymptotic theory makes no
prediction, this is in agreement with the predictions as given in Table 1.

FIF-R : i y 06
gamma

Fig. 8. Power comparison of weighted autocorrelation test, Jegadeesh regression, and Fama/French
regression as a function of v, for ¢ = 0.98.
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Thus, the asymptotic predictions appear to be generally verified, athough the
differences in the two long horizon regressions show that the asymptotic compari-
son is not a perfect predictor of test power in small samples. Thisissueis explored
further in Section 5.

4. Joint tests of weighted sums of autocorrelations

A number of studies including Fama and French (1988b) and Poterba and
Summers (1988) have looked at a set of mean-reversion test statistics, and
calculated significance levels based on the most significant statistic. As Richard-
son (1993) points out, the statistical significance of the overall test should be
evaluated by jointly testing whether all coefficients are equal to zero. Richardson
and Smith (1991) propose a x?2 joint test embedded in the GMM framework of
Hansen (1982) and use this joint test to evaluate the significance of Fama and
French's and Poterba and Summer’s results. Jegadeesh (1990) uses the test to
evaluate the joint significance of his modified long horizon regressions.

The intuition behind the results in this section is best expressed in terms of the
geometric interpretation given in Section 2.3. There, we showed that a weighted
autocorrelation test statistic can be interpreted as the length of the projection of the
vector of autocorrelations onto a vector of weights. Here we show that a y? test
of whether a set of n weighted autocorrelation test statisticsis zero is equivalent to
a test of whether the projection of the autocorrelation vector onto the n-dimen-
sional subspace spanned by the n weight vectors has a length zero.

An important implication of these results is that the y? joint test may lack
power against the very aternatives the econometrician is interested in. For
example, if he wishes to look for mean reversion in stock price data, without
having precise knowledge of the persistence of the mean reversion, he might elect
to run a set of n long horizon regressions and then test their significance using a
x? test. Even if the individual regressions have considerable power against the
aternative, the power of the joint test may be quite low. The reason for thisis that
joint test looks for deviations from the null in the entire n dimensional subspace,
even if the alternative suggests deviations only in a particular direction within the
subspace.

We perform the analysis in this section within a GMM framework. All of the
tests we are concerned with are tests of whether returns are orthogonal to past
returns, and GMM framework is a genera way of anayzing this type of
restriction. We establish the equivalence among the three tests: (1) a y2 or Wald
joint test of M regression coefficients or variance ratios, as in Richardson and
Smith (1991); (2) a GMM-test of a set of M overidentifying restrictions; and (3) a
x?2 joint test of a set of M weighted autocorrelogram tests. For expositional
reasons, we show this equivalence in terms of long horizon regressions, though the
method is applicable to any joint test of any regressions, moment restrictions, or
variance ratio tests.
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4.1. The long horizon regression in a GMM framework

A single long horizon regression can be written in a generalized instrumental
variables framework by noting that the OLS estimates of «(7) and 3(r) are based
on the moment restrictions that E[e(t, t+ 7)]=0 and E[e(t, t+ 7)r(t, t+ 7)]
=0: that is, on the restriction that the regression residual e(t, t+ 7) =r(t,
t+7)— alr)— B(r)r(t— 7, t) be orthogona to the instruments of 1 and r(t,
t + 7). These two orthogonality conditions are used to estimate the system of two
unknowns. In the GMM framework, we can represent these restrictions in the
following way:

1T
gt(0)=;_29t(0)
_Ei r(tt+7)—a(r)—B(r)r(t—r.t)
TEN\[r(tt+7) —a(r) = B(r)r(t—r,)]r(t—r,t)

t

(4.1)

The GMM estimator of @ = (a(7)B(7)) then minimizes the distance of the
sample moment vector g,(@) from zero. This is done by minimizing g,(8)
W;g,(0), where W; is some weighing matrix. For this just-identified system, the
choice of weighing matrix is unimportant since for some choice of @, every
element of the g,(#) vector will be equal to zero.

In general, there are more moment restrictions than variables to be estimated.
Hansen (1982) shows that in this case, the optimal weighing matrix is the inverse
of the variance—covariance matrix of g.(0) evaluated at the true value of @, 6,:
-1

(4.2)

W*=g;t= ( i E[g[(oo)gt—j(OO),]

j=—

and that, given this weighing matrix, 0 is consistent and asymptotically normally
distributed:

VT (6~ 06)=(0,[DyS; D] ') (4.3)
where
99.(0o)
D0=E[ vy } (4.4)

This representation can be extended to jointly estimate a set of regression
coefficients. This results in the following set of just-identified moment equations:

L[ [r(ut+]) =B r(t=jn]r(t=j)

)Y :

SHr(tt+k) = B(K) r(t—k,)]r(t—k,t)
(4.5)

9:(0) =

=l

_th(o) =

=l
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where now the returns are demeaned and the intercept terms and corresponding
moment restrictions have been removed from the system.!* Note that, again, the
estimates of the B’s will be identical to the OLS regression estimates since the
system is just identified. The D, and S, matrices can be constructed under the null
hypothesis, following Richardson and Smith (1991):

jo? 0
Dy = ( 0 ka'z) (4.6)
j(a+2j?) .
3 J2+S(J|k)
SO=0'4 (4.7)
_ _ k(1+ 2k?)
Jz"‘s(l,k) 3

where o2 is the variance of a single period return (E[r?2]) and where

-1
s(jk) =2 (j—min(jk-1)
=1

The variance—covariance matrix of the vector of B estimators then obtained by
matrix manipulation from Egs. (4.6) and (4.7).

2i7+1  2+s(jk)

~ Ve -1 3] jk
V(F)=(Pe%™0o) =ik a1 (48)
i 3k

and the Wald test that the set of B’s are egual to zero is given by

I=TE[V(B)] B (4.9)

With this method, GMM is used to estimate the set of regression B's, and then a
separate Wald test is performed to determine whether the 8’s are jointly signifi-
cantly different from zero, using V( 8) as calculated anayticaly in the GMM

" The test statistic Richardson and Smith (1991) propose is not equivalent to this test in small
samples because the estimated intercept terms (a’s) obtained from estimating this overidentified
system are dightly different. However, since T is a consistent estimator of «(t) under our assumptions,
the tests will be identical asymptotically. We could set up an overidentified system in which the a’s
were estimated using the moment restriction that E(€;-1) = 0, but this would complicate the analysis
without adding additional insight.
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framework. Alternatively, one could directly impose the moment restrictions
which encompass this restriction (that 8(7) = 0Vr > 0):

r(tt+j)r(t—j,t)

XT: ; (4.10)
SHr(tt+ k) r(t—k,t)

Again, from Hansen (1982), a test statistic that indicates the “distance” of this
model from the data is given by

J'=Tg( 5)'36 1gt( é)

which is asymptotically x? distributed with n degrees of freedom.

Just as is done above, we can construct S;* under the null hypothesis, and
from Eq. (4.2), we see that when calculated under the null, S, will be identical to
the S, given in Eq. (4.7) because under the null hypothesis, 8 is zero for al return
horizons. Now, we define S; =S,/0 %, where, from Eq. (4.7), S; is now a
function for j and k only. This means that we can construct an aternative S,
which we denote as S}, in the following way:

17T 1
— (0) = —
Ot Tg.lgt( ) T

(4.11)

N2 N2
g g
(jl) 0 (jl) 0
SB: 2 Sg 2
a (k) a (k)
k k
where
2/ 1 T . 2
o (J)=$Zf(t—l,t)
t=1

Since under the null hypothesis, (¢2(j))/j is a consistent estimator of o, the
one-period return variance, S}, is a consistent estimator of ¢ *S; = S,.

When (S]) ™! is substituted into the definition of J’ in Eq. (4.11), we obtain the
following expression for the test statistic:

1 1
T 0 J_ 0
’ ' -1 o/ w0\~ A
Y=Tg(sh) e =TB| |7 |8
o - 0o -
k k

V(B ?

Comparing this egquation with Egs. (4.6)—(4.8) confirms that the Wald statistic in
Eqg. (4.9) and the test statistic for the overidentified GMM system given here are
identical.
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4.2. Asymptotic equivalence to a set of weighted autocorrelation tests

We show now that the test of the moment restrictions in Eq. (4.10) is
equivalent to the test of whether a set of weighted sums of autocorrelations are
zero. Using these results, we present in Section 4.3 an intuitive geometric
interpretation of the joint test.

First, note that the set of moment restrictions in Eq. (4.10) are equivalent to

2j

Y min(s,2j —S)rry, s

t |s=0

> : (4.12)
t=1( o

Y min(s,2k—S) 1,1y,

s=0
Additionally, S, will again be of the same from here as in Eq. (4.7). However,
since we can choose any consistent estimator of the single period variance in Eq.
(4.7), we now choose

1T
G2=o?(1) = = Lr?
Tt=l

which is the variance calculated using one-period returns. The test of the overiden-
tifying restrictions can now be written

¢—|-||—\

1
t

- T Lo(0)-

n ! 1 71 1
J'= Tng (So) 579

and
me(sZJ—S)( tHS)
17 1T (%° A
9r = T:Z 9, (0) = TZ

t=1

N

) .
Y min(s,2k — s)( : HS)
s=0 Iy

2j

¥ min(s.2j - )
s=0

2k

Y- min(s,2k — s) p,
s=0
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so we see that the moment conditions are equivalent to restrictions that weighted
sums of autocorrelations be equal to zero. Using vector notation, we can rewrite
the moment conditions in Eq. (4.13) as

w(i) b
g =| (413)
w(k)
where w(j) is a k-vector whose ith element is max(0, min(s, 2k — s)), and p isa
k-vector whose ith element is the autocorrelation at lag i.

Note that when g, is expressed in this way, we can apply the asymptotic
relationship

TE=[pp'] =1
to show that that S;, the variance—covariance matrix of g,*, will be given by:
w(j) ppw(j) - W(J)’ﬁ?)W(k)
=elgr'gr ] = . - :
w(k) ppw(i) -+ w(k) ppw(k)
w(iyw(i) oo w(j)w(k)
w(kyw(j) - w(k)w(k)

which extensive algebraic manipulation reveals to be identical to the S =
(1/0")S, given in Eq. (4.7). Thus, when we express the regressions as weighted
sums of correlations, we have a more straightforward way of deriving the
Richardson and Smith (1991) variance—covariance matrix as given in Eq. (4.8).
Moreover, writing the test in this way leads to a simple geometric interpretation of
the test power, which we provide in the next section.

4.3. Geometric interpretation of the joint test

We can gain considerable intuition into the workings of the joint test by giving
the joint test power issue a geometric interpretation analogous to what was done
for the single weighted autocorrelation test in Section 2.3. Again, we consider a
p-dimensional space in which the set of sample autocorrelations is expressed as a
vector with elements (p;, p,..., p,). We showed in Section 2.3 that the test
statistic TA>=TX_w, p,, was the square of the length of the projection onto the
vector of weights w, "where w = (wy, W,..., w,), and that this statistic was 7
distributed with NCP ((a*Ic®%) /o) cos? " Under the alternative hypothesis,
where ¥ is the angle between the vector ¢? and the vector of weights w. Since the
dternative hypothesis is noncentral y? distributed and the null hypothesis is
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central x? distributed, we showed that the most powerful test will maximize the
NCP, which is done by packing weights so that ¥ is zero or 7.

We can provide a similar interpretation of the joint test. Consider again the
joint test of a set of M long horizon regressions, as expressed by the set of
moment restrictions in Eq. (4.13). If the test statistic

I =Toi' (&) o7 ~ i (4.14)
is rewritten as
~ 1 ~
J'= p’W'($I)Wp
where
w(j)
w=|
w(k)

We see that J” is the square of the length of the projection of p onto the
M-dimensional manifold (or subspace), which is spanned by the M eigenvectors
w(j)...w(k).

Additionally, just asin Section 2.3, the distribution of the joint test statistic J”
is x2 distributed with NCP ((a*|c?|?)/ o) cos?> ¥ where ¥ is now the angle
between the vector of autocovariances c¢? and the M-dimensional manifold con-
taining the weight vectors.

For this setting, the power of the test will depend both on the angle ¥ and on
the number of restrictions M. The most powerful test will both maximize cos(¥)
and minimize M. However, when the alternative hypothesis is known precisely,
there will be some tradeoff: increasing the dimensionality of the W matrix may
decrease the expected value of co(¥), thus increasing the expected NCP of the
test statistic, but it will also increase the number of degrees of freedom of the test
statistics y 2 distribution. An extreme example of thisis Box—Pierce Q test, which
is the joint test of whether each of the p autocorrelationsis zero: for thisjoint test,
any process is an implicit aternative, but of course it will have a very little power
against any specific aternative.

Fig. 9 illustrates the problem with the method of using a x? joint test of the
significance of a set of tests. Suppose the econometrician was using the first three
autocorrelations to investigate mean reversion, and he believes that each of the
three autocorrelations are likely to have roughly equal positive values. He might
then run a joint test of three weighted autocorrelation tests using the weight
vectors illustrated in Fig. 9. Each of these three tests would, individualy, be
powerful against the alternative. But, as our analysis shows, the joint test will have
considerably lower power: while the econometrician wishes to place large weight
on sample autocorrelations, vectors in a narrow region of R heisin fact putting
equal weight on deviations in any direction in R>.
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b1

Fig. 9. A geometric illustration of the joint test problem.

Another way of stating this intuition is to say that when the number of
restrictions being tested is increased, the “larger” the manifold of implicit aterna
tives becomes. The greater the dimensionality of this manifold, the greater the
number of unreasonable alternatives the test is likely to have power against, and
the lower the tests power against reasonable alternatives. We show in Section 5
that other types of joint tests can have greater power.

5. Small sample size and power of long horizon regression methods

Fama and French (1988a) perform the following long horizon regression on the
CRSP, EW, VW and size decile portfolio real returns for 1926—1986.
R =a(m) +B(T)R_, + &
The regressions are done for return horizons of 1, 2, 3, 4, 5, 6, 8 and 10 years,
using monthly data, and the (consistent) OLS coefficients are calculated. A
T-statistics is used as a test of statistical significance,
B()
T(7) = 51
(="g (5.1)
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where, because of the overlapping observations and the resulting correlated
residuals, s83 is calculated using the Hansen and Hodrick (1980) method.

Fama and the French find that for the EW index and for size deciles 1-7, the
slope coefficient for a return horizon of 4 years (48 months) is more than 2
standard errors from 0. Additionally, the slope coefficients for return horizons of 3
and 5 years are significantly different from 0 for a number of the portfolios. Fama
and French conclude from this that there is evidence of mean reversion in the
stock prices of small firms over the 19261986 period.

However, the Fama and French evidence is not unambiguous. First, Richardson
(1993) challenges the statistical reliability of the Fama and French results on the
ground that the test does not properly account for implicit multiple comparisons.
That is, one cannot conclude from the statistical significance of the regression
coefficient at a single return horizon that there is evidence of mean reversion; a
joint test of significance of the coefficients at al eight return horizons must be
conducted. Using this test, Richardson finds that the stationary random walk
hypothesis cannot be rejected over the 1926—1986 sample period.

Second, Richardson and Stock (1989) suggest that the asymptotic standard
errors used by Fama and French and by Richardson and Smith are flawed because
of bad small sample properties. They suggest another asymptotic method of
calculating the B standard errors, which is based on holding the return horizon at a
constant fraction of the sample size as the length of the data series goes to infinity.
They show that the J/T limiting distribution calculated under these assumptions
has much better small sample properties than the conventional asymptotic distribu-
tion, and finally, they show that even the individual Fama and French regression
coefficients ( B(7)'s) are statistically insignificant when the significance is deter-
mined using the J/T asymptotics. They, therefore, concluded that statistical
significance of the individual slope estimates that Fama and French finds is due to
the poor small sample properties of the Hansen and Hodrick estimator.

We point out in this section that, while both of these critiques are well founded,
their conclusions that the long horizon test statistics presented by Fama and French
do not alow rejection of the null hypothesis are due to the use of a different test:
Fama and French use Hansen/Hodrick calculated T-statistics while Richardson
and Smith (1991) and Richardson and Stock use statistics calculated under the null
hypothesis of no seria correlation. While these two statistics are asymptotically
equivalent, their power differs in small samples, as was demonstrated in the
Monte-Carlo results in Section 3.4.3.

We show in this section that if the small-sample corrected p-values of the
Hansen/Hodrick T(7) statistic are used instead of the p-values for the B(7)
statistic, there is still evidence of mean reversion like. Therefore, the reversal of
Fama and French's conclusion is not due to the small sample properties of the
estimator, as claimed, but rather to the difference in power of the two tests.

In addition, we show that the poor small sample properties of the B(7) statistic
can largely be corrected by adjusting the OL S regression coefficient, the weighting
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matrix and sample autocorrelations in the Hansen and Hodrick standard error
calculation for small sample biases: Once these corrections are made, the small
sample properties of the asymptotic statistics are greatly improved.

5.1. Calculation of the small sample distribution

We begin by deriving analyticaly the small-sample bias of the é(f)OLS, which
is available on request from the author. Though tedious to derive, the intuition for
the small sample bias is simply that a demeaning series induces negative serial
correlation. As an extreme example, consider calculating the first-order serial
correlation based on two observations. the calculated value will aways be
negative because once the observations are demeaned, one of them will be positive
and the other negative. Next, using Monte-Carlo methods, we calculate the
empirical distribution of the 8(r)OLS with and without the bias adjustment, for a
sample of 720 points (the length of Fama and French’s sample). This was done for
return horizons of 12, 24, 36, 48, 60, 72, 96 and 120 periods, corresponding to the
1-, 2-, 3-, 4-, 5-, 6-, 8, and 10-year horizons used by Fama and French and
Richardson and Stock. The cumulative empirical distribution without the bias
correction is plotted in Fig. 10.
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Fig. 10. Fama/ French regression—cumulative distribution of Hansen /Hodrick T-statistic-Monte-Carlo
results—no bias correction, 720 points, 20000 iterations.
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results—nbias correction, 720 points, 60000 iterations.

Fig. 10 shows that, as demonstrated by Richardson and Stock, for long return
horizons, the OLS B(7) estimator has a small sample distribution that is clearly
not well represented by a mean-zero normal. Also, as they point out, the likelihood
of negative values is quite high under the null hypothesis. However, Fig. 11 shows
that the distributions of the bias-adjusted T statistics for return horizons of 1-6
years are amost identical to the asymptotic distribution, and that for the return of
8 and 10 years, the distribution is actually narrower: the probability of extreme
negative values is lower than what is predicted by asymptotic theory.*?

5.2. Empirical results

We performed the long horizon regression tests for real returns using the
bias-adjusted Hansen/Hodrick T statistics. We present the regression 8(7)'s in

12 The bias correction appears to be slightly too-small here, in that for al return horizons except 8
and 10 years, the mean of the distribution is somewhat negative.



Table 2

Fama and French regressions—real returns: 1926—1985—with significance levels based on small sample empirical distribution

Sizedecile Bias adjusted ’sand p-values

portfolio Return horizon

1 2 3 4 5 6 8 10
EW * —0.05(0.342) —0.23(0.077) —0.33"(0.027) —0.37" (0.011) —0.35" (0.023) —0.13(0.254) —0.12(0.690) 0.31(0.850)
1 0.02 (0.582) —0.14(0.197) —0.26 (0.088) —0.39" (0.024) —0.347(0.046) —0.06 (0.397) 0.39(0.951)  0.64 (964)
2" 0.01 (0.558) —0.12(0.229) —0.26 (0.075) —0.42* " (0.006) —0.45* * (0.003) —0.27 (0.064) 0.01(0.493)  0.17(0.696)
3" —0.04 (0.394) —0.17 (0.140) —0.28 (0.051) —-0.37" (0.011) —0.36" (0.017) —0.18(0.158) —0.04(0.386)  0.06 (0.539)
4 —0.02 (0.450) —0.11(0.251) —0.21(0.116) —0.35" (0.010) —0.38" (0.006) —0.20(0.111) 0.00 (0.473)  0.14 (0.696)
5 —0.05 (0.356) —0.22(0.084) —0.297(0.044) —0.32" (0.025) —0.32"(0.030) —0.16 (0.205) 0.05(0.570)  0.24 (0.790)
6 —0.05(0.327) —0.20 (0.099) —0.32"(0.032) —0.33" (0.018) —0.29" (0.046) —0.09 (0.310) 0.08 (0.622)  0.23(0.763)
7 — 0.06 (0.300) —0.26" (0.048) —0.337(0.025) —0.26 (0.058) —0.20(0.143) —0.01(0.482) 0.14 (0.704)  0.21(0.722)
8 —0.06 (0.317) —0.23(0.071) —0.317(0.029) —0.247 (0.049) —0.18 (0.135) 0.03 (0.580) 0.17 (0.763)  0.24(0.776)
9 —0.03 (0.403) —0.22(0.085) —0.28(0.053) —0.15(0.209) —0.02(0.488) 0.21 (0.842) 0.34(0.878)  0.33(0.799)
10 — 0.06 (0.303) —0.25" (0.050) —0.29"(0.041) —0.14 (0.230) 0.00 (0.532) 0.21 (0.848) 0.34(0.876)  0.30 (0.790)
VW —0.03(0.399) —0.21 (0.096) —0.26 (0.072) —0.10 (0.301) 0.06 (0.642) 0.26 (0.890) 0.36(0.884)  0.30(0.781)
Hansen / Hodrick T-statistics
EW (—0.46) (-1.64) (-229) (—2.85) (-2.35) (-0.71) (0.46) (0.80)
1 (0.15) (—0.98) (-1.57) (-2.39) (-1.96) (—0.30) (1.46) (1.45)
2 (0.08) (-0.84) (—1.68) (-3.14) (—-3.42) (—1.65) (0.04) (0.45)
3 (=032 (-1.22) (-1.92) (-2.84) (-251) (-1.08) (-0.17) (0.18)
4 (-0.18) (-0.76) (—1.40) (—2.89) (-3.10) (-1.31) (0.01) (0.44)
5 (-0.43) (—1.59) (—2.00) (—-2.37) (—-2.21) (-0.88) (0.21) (0.64)
6 (-0.51) (—1.47) (-2.20) (—2.56) (—1.96) (-0.53) (0.32) (0.58)
7 (—0.59) (-1.93) (-2.33) (—1.86) (-1.21) (—0.08) (0.49) (0.49)
8 (-0.53) (-1.70) (-2.26) (=197 (-1.25) (0.17) (0.64) (0.60)
9 (—0.30) (-1.58) (-1.88) (-0.95) (—0.08) (0.93) (1.02) (0.66)
10 (-0.57) (—1.90) (—2.05) (—0.88) (0.02) (0.94) (1.00) (0.63)
VW (=032 (-1.49) (-1.69) (-0.62) (0.30) (1.14) (1.05) (0.61)

Tdenotes a p-value < 0.05.

* denotes a p-value < 0.0025.

" denotes a p-value < 0.01.

GES—€6Y (T00Z) 8 8UeU I [edliIdw 4o feudnor / pived "M

T€S



532 K. Daniel / Journal of Empirical Finance 8 (2001) 493-535

the upper parts of Table 2. The Hansen/Hodrick T-statistics for each of these
coefficients are given at the bottom of each table, and empirical p-values for these
T-statistics are given under each coefficient. These p-values are calculated from
the Monte-Carlo results plotted in Fig. 11 and are, therefore, correct in small
samples.

The results here should be compared to those in Richardson and Stock’s (1989)
Table 4. They find that three sope coefficients are significant at the (two-sided)
5% level. In contrast, we find that 11 slope coefficients are statistically significant
at the (two-sided) 5% level.

Based on the problems with the y? joint test discussed above, we use a
different statistic: we look at the most significant of the eight Fama French
regression coefficients. Supposedly, the reason for performing a number of
regressions in the first place is that since the optimal test return horizon is
dependent on the parameters of the alternate hypothesis, regressions should be run
for a range of return horizons corresponding to the range of parameter values in
the prior distribution. The acceptance or rejection of the null hypothesis should
then be based on a joint test of regression coefficients. However, we have shown
that while the regression test may be powerful against one of the range of
alternative hypotheses for a single regression, the power of the y? joint test
against the entire range of aternatives may be only peripherally related to the
power of the individual regressions. Therefore, as a joint test, we use the most
significant statistic as a measure of the overall significance but statistically correct
for having selected this statistic from the set of regression coefficients.

In order to determine significance levels, we empirically calculate the distribu-
tion of the most negative of the statistics as described before. Based on this joint
test, only the decile 2 returns exhibit evidence of mean-reversion at the 5%
two-tailed level. However, based on the stated dternative of the AR(1) fads
model, the one-tailed test is appropriate, and the EW and decile 2, 3 and 4
portfolios exhibit mean reversion at a 10% one-tailed level.

However, the economic significance of these results is still suspect based
Jegadeesh’s (1990) finding that all significant mean reversion appears to be due to
high returns of small firms in January, and to the severe heteroskedasticity in the
sample period.

6. Conclusions

We have developed a method that allows analytical calculation of the power of
tests of mean reversion. This method alows us to calculate the power of any
weighted autocorrelation tests. We have shown the equivalence of this test with
the long horizon regression test, the variance ratio test, weighted spectral tests, and
any instrumental variable or generalized method of moment (GMM) tests, which
use linear functions of past returns as instruments.
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This method has allowed us to make power comparisons tests of this class and
to determine the implicit alternative the tests. In addition, we have shown how to
determine the optimal test given a null hypothesis that returns are the sum of a
differenced martingale and an alternative process with an ARMA( p, q) represen-
tation: in this setting, the optimal test will be a weighted sum of the sample
autocorrelations at different lags, where the weights are proportional to the
expected return autocorrelations under the alternative hypothesis. We have aso
provided a simple geometric analogy that gives the intuition for this result.

In the spectral domain, we have shown that the weighted autocorrelation test
can just as easily be written as a weighted periodigram test, with an anaogous
result that the optimal weighted periodigram test will have weights proportional to
the expected periodigram under the alternative. This test shares the optimality
property of the weighted autocorrelogram test.

We have also addressed the issue of joint tests. We show that the results extend
easily to the case of multiple autocorrelation or instrument restrictions as that in
the simple geometric intuition developed in the first part of the paper. An
important result of this section is that the power of a joint test of moment
restrictions (or y?2 joint test) of this sort may be only peripherally related to the
power of the individual tests.

Since our analytical test-power results are valid only asymptotically and under
local aternatives, we conducted Monte-Carlo experiments to investigate the
robustness of these results for small sample sizes and for nonlocal alternatives
found that the results were robust, at least for the limited set of alternatives we
consider.

Finally, we have shown how small differences in the small sample properties of
atest can lead to strikingly different statistical inferences. We show that the long
horizon regression, which uses anaytical standard errors, may have low power
against simple mean reverting aternatives, and that this, not poor small sample
properties, is the reason Richardson and Stock (1989) find no evidence of mean
reversion using this test. We empirically calculate the small-sample corrected
distribution for the Fama and French T-statistics, and find more evidence in favor
of a mean reversion hypothesis.
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Appendix A. The statistical properties of the sample estimators under the
local alternative

If a process is described by:
O(L)x,=¢(L)Y, i~ IID(O,O'UZ) (A1)
Eu'=not < (A.2)

where ¢(L) and 6(L) are finite-order lag polynomials, and where ¢(z)/60(2) has
roots outside the unit circle (for stationarity), then Brockwell and Davis (1991)
show that if we define the vectors of covariances and correlations in the following

way:

G Po
&= pr=|
Ch Py
where
T—r ax
C = %tgoxt Xiyr PP = 2_;)(
then ¢* and p* will have the following asymptotic distributions:
X~ (e T71V) (A.3)
pX~ (P T W) (A4)

where the elements of the variance—covariance matrices V and W are given by:

vij=(n—3)cc + by {Cka—H—j + Ck+jck—i}
k= — o

©

Wij = > {pk+i Prvj T Pr—i Prsj T 2P pj pi — 2p, pj Pfﬂ = 2p; px pl?ﬂ}
k= —x
Under the assumption that X, is generated by a stationary, finite-order ARMA
process, each of these elements is finite.
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