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1. Introduction

The power of mean reversion tests has long been a tacit issue of the market
efficiency literature. Early tests of market efficiency, as summarized in Fama
Ž .1970 , found no economically significant evidence of serial correlation in stock

Ž .returns. However, Summers 1986 later suggested that this was because these
tests lacked power: Summers suggested a model of AfadsB in which stock prices
take long swings away from their fundamental values, and showed that even if a
fads component such as this accounted for a large fraction of the variance of
returns, the fads behavior might be difficult to detect by looking at short horizon
autocorrelations of returns as these early tests had done.

The intuition behind Summers’ reasoning was that if stock prices took large
jumps away from their AfundamentalB or full-information values, and then only
reverted back towards the fundamental price over a period of years, the autocorre-
lations of monthly or daily returns would capture only a small fraction of this
mean reversion.

Several attempts were made to develop tests that would have greater power
Ž .against AfadsB hypotheses such as Summers’. Fama and French 1988a used a

long horizon regression of multi-year returns on past multi-year returns, and
Ž .Poterba and Summers 1988 used a variance ratio test to look for fads-type

behavior in stock-index returns. In addition, variance ratio test are used by
Ž . Ž .Cochrane 1988 and Lo and MacKinlay 1988 to investigate the time series

properties of production and short horizon returns.

) Tel.: q1-847-491-4113.
Ž .E-mail address: kentd@nwu.edu K. Daniel .

0927-5398r01r$ - see front matter q2001 Elsevier Science B.V. All rights reserved.
Ž .PII: S0927-5398 01 00038-X



( )K. DanielrJournal of Empirical Finance 8 2001 493–535494

Both Fama and French and Poterba and Summers develop intuition for why
these long horizon tests should have more power to detect fads type behavior, and
some effort has since been made to both verify and formalize this intuition. Lo and

Ž .MacKinlay 1989 use Monte-Carlo methods to compare the power of the variance
Ž . Ž .ratio, Box–Pierce Q, and the Dickey and Fuller 1979 t-tests. Jegadeesh 1990

Ž .used the approximate slope method Badahur, 1980; Geweke, 1981 to evaluate
the power of a generalized long horizon regression, and Richardson and Smith
Ž .1991 use this method to evaluate the power of the variance ratio test and long

Ž .horizon regression against specific alternatives. Hodrick 1992 and Campbell
Ž .1992 propose similar analyses for multivariate tests.

However, these papers are all comparisons of power across a discrete set of
tests and for a specific mean reverting alternative; none presents a method for
determining the most powerful test or suggests how far their tests might be from
optimal for the specified alternative. Moreover, little or no intuition is provided as
to the robustness of these results with respect to changes in the alternative
hypothesis.

In this paper, we develop a methodology for determining asymptotic test
Ž .power. This method allows us 1 to determine the most powerful test against a

Ž .specified alternative; 2 to determine the distance of a test from the optimal test
Ž .using an analytical measure of test power and 3 to determine the implicit

alternative to any test. 1 Moreover, the straightforward geometric interpretation of
test power we present facilitates consideration of test robustness issues.

It is important to note here that what we present a method for constructing an
optimal test once the alternatiÕe hypothesis has been determined. We do not treat
the problem of actually specifying the alternative hypothesis, which is very
difficult problem, and is probably the reason that so many ad hoc tests have been
used in the finance field. Nonetheless, in the debates over what type of test is
appropriate, test power is often an issue that is ignored, or is addressed using
Monte-Carlo methods that are not robust to small changes in the alternative
hypothesis. The method we present here does allow us to address those questions.

The methodology we develop is applicable to all moment restriction tests where
the instrument is a linear combination of past returns. This class encompasses the
long horizon regression test, the variance ratio test, weighted spectral tests
Ž . Ž .Durlauf , and instrumental variable and generalized method of moments GMM
tests involving past returns.

Since our analytical test-power results are valid only asymptotically and under
local alternatives, we validate these results for small sample and nonlocal alterna-
tives using Monte-Carlo experiments. We find that the asymptotic results extend

1 The implicit alternative of a test is that alternative against which the test is the most powerful,
which we shall discuss later.
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well to small samples but also show that two asymptotically equivalent tests may
have different small sample properties.

This test-power determination method extends naturally to the consideration of
joint tests of moment restrictions. This issue is of importance in the finance
literature: in attempting to characterize a time series of returns, a common
approach in the finance literature is to run a set of tests in order to determine the
time series properties of the returns series. For example, Fama and French run a
set of eight long horizon regressions at return horizons of 1, 2, 3, 4, 5, 6, 8 and 10

Ž .years. Poterba and Summers 1988 perform variance ratio tests for similar
horizons. Both find evidence of mean reversion at some horizons. However, as

Ž .Richardson 1993 points out, the significance of these results must be based on
Ž .the joint significance of all tests. Richardson and Smith 1991 suggest calculating

the joint significance by forming a x 2 statistic where the variance–covariance
matrix of the sample regression coefficients is calculated under the null hypothe-

Ž .sis. A similar approach is adopted by Jegadeesh 1990 and others.
However, we show that a x 2 joint test of this form will have very low power,

even if the individual tests are all powerful against the alternative.
One way of interpreting the Fama and French and Poterba and Summers tests is

that a number of horizons were used because the researchers had the alternative
that returns were mean reverting, but were unsure of the degree of persistence of

Žthe mean reverting component. They, therefore, studied a set regressions or
.variance ratios that bounded the range of mean reversion rates they expected to

see, and estimated the rate of mean reversion by determining the return horizon at
which the regression coefficient was most significant. This would have been a
statistically correct procedure had they corrected for the fact that they had
searched over a large number of regression coefficients. This would have been
similar to a procedure in which the mean reversion coefficient was estimated from

Ž .the data, and then, using this parameter estimate for example in a GMM setting ,
a test was conducted of whether the variance of the mean reverting component
was significantly different from zero. While a test such as this would have power
that is independent of the number of regressions run, the power of the x 2 test of
the joint significance of the regression coefficient decreases as the number of

Ž .regressions variance ratios increases. Thus, this method of testing is inherently
statistically weak. This result is verified using Monte-Carlo Studies.

Finally, since our analytical test-power results are valid only asymptotically and
under local alternatives, we also conduct Monte-Carlo experiments to investigate
the robustness of these results for small sample sizes and for nonlocal alternatives.
We find that the results are generally robust, but we also explore situations where
the asymptotic theory will lead to incorrect conclusions. We extend the results of
this section to show how small differences in the small sample properties of a test
can lead to strikingly different statistical inferences. We show that the long
horizon regression, which uses analytical standard errors as proposed by Richard-

Ž .son and Smith 1991 , suffers from low power against simple mean reverting
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alternatives, and that this, not poor small properties, is the reason Richardson and
Ž .Stock 1989 find no evidence of mean reversion using this test. We empirically

calculate the small-sample corrected distribution for the Fama and French T-statis-
Ž .tics, which are based on Hansen and Hodrick 1980 calculated standard errors,

and show that there is still a good deal of evidence in favor of a mean reversion
hypothesis. We show why a test based on the HansenrHodrick based T-statistic is
more powerful even though the two test are asymptotically equivalent.

We proceed by showing that all of these are asymptotically equivalent to
weighted autocorrelation tests, and develop the result that, for univariate tests, the
most powerful test statistic is that which is a weighted sum of sample autocorrela-
tions at different lags, for which the weights are proportional to the expected
autocorrelation under the alternative hypothesis.

The intuition behind this method is straightforward, and is based on the fact
that under the null hypothesis, the vector of sample autocorrelations at different
lags is asymptotically mean zero, and is multivariate-normally distributed with a

Ž .variance–covariance matrix Vs 1rT PI. In other words, sample autocorrela-
tions at different lags have the same variance and are uncorrelated. If one changes

Žthe hypothesis from the null to the local alternative hypothesis Davidson and
Ž .. Ž .MacKinnon 1987 i.e., if the serial correlation is small , the mean of the sample

autocorrelation vector will shift in the direction of the alternative but the variance
covariance matrix of sample autocorrelations will remain the same. Given these
null and alternative autocorrelation distributions, we show that the most powerful
test statistic is a linear combination of sample autocorrelations where the weight-
ing vector is proportional to the vector of expected sample autocorrelations.

One of the virtues of writing these tests as weighted autocorrelation tests is that
it leads to simple geometric interpretation of test power, which we provide in
Section 2.3. We show in Section 2.5.1 that the weighted autocorrelation test can
just as easily be written in the spectral domain as a weighted periodigram test,
with an analogous result that the optimal test will have weights proportional to the
expected periodigram under the alternative. This test has same optimality proper-
ties as the weighted autocorrelation test.

We also show another version of the optimal test is one tests the orthogonality
of the current return to the optimal predictor of the current return, based on the
alternative hypothesis.

Ž .Two other papers explore the topic of determining an optimal test. Faust 1992
presents a method for determining the optimal filtered variance ration test based
on maximum likelihood methods. Perhaps most closely related to this paper is

Ž .Richardson and Smith 1994 , which develops a general method for determining
the optimal test given a mean-reverting alternative. Using the approximate slope
method as a measure of test power, Richardson and Smith reach conclusions on
the optimal test statistics, which are similar to those we present in Sections 2.1 and
2.2. In addition, Richardson and Smith compare the power of their optimal test for
the Summers’ fads alternative to the long horizon regression test, to the variance
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Ž . Žration test, and to the Jegadeesh 1990 regression both asymptotically using the
.approximate slope measure and in small-samples using Monte Carlo methods.

The paper is organized as follows. Section 2 develops the weighted autocorrela-
tion test and proves its optimality, and extends this development to the spectral
domain and to calculation of the optimal instrument. Section 3 demonstrates the
equivalence of commonly used mean reversion tests to weighted autocorrelation
tests, and investigates their optimality and the implicit alternatives of these tests.
Section 4 extends the analysis to joint test of restrictions, and Section 3.4 presents
Monte-Carlo results on the small sample power of the tests. Section 5 reexamines

Ž .the Fama and French 1988b long horizon test for mean reversion in light of this
evidence. Section 6 concludes the paper.

2. The optimal univariate tests—the weighted autocorrelation test

In this section, we derive the asymptotic properties of the weighted autocorrelo-
gram test and show that this test is asymptotically a uniformly most powerful test
against a local alternative for which the return generating process can be described
by an ARMA model. By uniformly most powerful, we mean that for any

Ž .significance level or probability of Type I error selected by the econometrician,
the probability of Type II error is minimized. We also provide a simple geometric
illustration of the power of the test.

2.1. The local alternatiÕe hypothesis

We begin with a Pitman sequence of local data, or return, generating processes
Ž .DGPs :

1
y

4
r smqaT a qu 2.1Ž .˜ ˜ ˜t t t

where u and a are given byt t

u ; IID 0,s 2 Eu4sh s 4-` 2.2Ž .˜ ˜Ž .t u u u

u L a sf L e 2.3Ž . Ž . Ž .˜ ˜t t

e ; IID 0,s 2 Ee 4sh s 4-` 2.4Ž .˜ ˜Ž .t e e e

E u e s0;t 2.5Ž .˜ ˜Ž .t tyt

Ž . Ž . Ž . wŽ . Ž .xf L and u L are finite-order lag polynomials, and f z r 1yz u z has
roots outside the unit circle.

This return is seen to be composed of two components, the u component,˜
which is a differenced martingale, and the a or AalternativeB component, which˜
has as ARMA representation. We assume that the correlation of e and u is zero.2t t

2 This assumption is not critical in that any ARMA process for returns can be decomposed in this
way.
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a is the parameter which determines how close the local alternative is to the null
hypothesis of white noise returns. Notice that null hypothesis is nested within the
alternative in the sense that when as0 the null is true, and when a is any value
other than zero, the alternative is true. Here, the return generating process under
the null hypothesis is allowed to be nonnormal, but must have a finite fourth
moment.3

Ž .Eq. 2.1 represents a sequence local DGPs: as the sample size of T increases,
the variance of mean-reversion component grows smaller. The factor of Ty1r4 in
the return generating process is chosen so that, given a fixed size, the power of the

Ž . 4test will converge to some value in 0, 1 as T™`. In the interest of tractability,
we must deal with asymptotic power, that is the power of the test T™`.
However, if we were to increase T without changing the importance of the
mean-reverting component, the power would always go to one as T™`. To allow
asymptotic power analysis, it is necessary to modify the alternative hypothesis as
T grows, to move it AcloserB to the null so that the asymptotic probability of

Ž .rejection under this local DGP is in 0, 1 . As we show later, this type of
convergence will occur only with an exponent of y1r4.

Ž . Ž .Given the definitions in Eqs. 2.1 – 2.5 , the covariogram of the returns series
r is given by:t

f z f zy1Ž . Ž .
a 2 tc sE a a ss z d z 2.6Ž .˜ ˜ Ht t tqt e y1u z u zŽ . Ž .G

where G is the unit circle in the complex plane. We write the autocorrelation
estimator for the r series as:t

1
Ýr rt tytĉt T

r s s 2.7Ž .ˆt 1ĉ0 2ÝrtT

Expanding the numerator yields:

1 1
y yT T1 1 4 4

c s r r s aT a qu aT a quˆ ˜ ˜ ˜ ˜Ý Ýt t tyt t t tyt tytT T � 0 � 0tst tst

3 Ž .Richardson and Smith 1991 also show that their optimal test is robust to limited kinds of
heteroskedasticity.

4 Ž .In the work of Davidson and MacKinnon 1987 and others concerning local alternative hypothe-
ses, this is usually a factor of Ty1r2. However, this is in a regression framework where only the DGP
for the dependent variables varies with T. In our framework, where returns are both the dependent and
independent variables, we want the product of these two to move towards the null at a rate of Ty1r2,
so each part individually must move at the rate of Ty1r4.
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a 2 1 1
c s a a q u uˆ ˜ ˜ ˜ ˜Ý Ýt t tyt t tytž /' T TT t t^ ` _ ^ ` _

asy2 a 4 y1a casy ;NN 0,s Tt Ž .uy2w x;NN ,O Tž /'T

1
y 1 14

qaT a u q a u 2.8Ž .Ý Ýt tyt tyt tž /T Tt t^ ` _

3
y

asy 2
;NN 0,O T� 0

a 2ca
tŽ .By Eq. A.3 , the first term has an expected value of and a variance of'T

Ž 4 2 . Ž y2 . Ž .a rT Õ sO T . By Eq. A.4 , the second term has a mean that istt p

asymptotically zero and a variance of s 4Ty1. The expectation of the last term isu

zero since u and a are mean zero and independent. The asymptotic variance of˜ ˜t t

this term is therefore:

5
y

2
2 2 2 2 2sa T E a u qa u q2 a u aŽ .Ý t tyt tyt t tqt t tyt

t

5 3 3
y y y

2 2 22 2 2 2 a 2 2 2 asa T 2Ts s q2Ts c s2a s T s qc sO TŽ . Ž .a u u 2t u a 2t p ž /
2.9Ž .

The plim of the denominator is s 2 while, based on the central limit theorem,T ™` u

the numerator tends to a sum of normally distributed random variables. Given this,
the distribution of the sample autocorrelation is given by:

a 2ca 1asy t
r ;NN , 2.10Ž .ˆt 2'ž /Ts Tu

The covariance of the autocorrelation estimator at different lags is obtained by
performing term by term multiplication of the three in the expansion of the
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Ž .expansion of the covariance estimator c in Eq. 2.8 . Denote these three terms byt̂

˜ ˜ ˜A , B , and C . We then have thatt t t

Cov c ,c sE c c yE c E cˆ ˆ ˆ ˆ ˆ ˆs t s t s t

˜ ˜ ˜ ˜ ˜ ˜sE A PA qB PA qC PAs t s t s t

˜ ˜ ˜ ˜ ˜ ˜qA PB qB PB qC PBs t s t s t

˜ ˜ ˜ ˜ ˜ ˜qA PC qB PC qC PCs t s t s t

Ž .Independence of u and a plus assumption 2.2 guarantees that the expectations of˜ ˜
˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜the APC, BPC and BPBP terms are zero. Expansion of the C PC in a manners t

Ž .similar so that in Eq. 2.9 above yields:

˜ ˜E C PCs t

22a
2 2 2 2s E a a u qa a u qa a u qa a u˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜tqs tqt t tys tqt t tqs tyt t tys tyt t3r2T

2a 2s 2
asy u a as c qcŽ .syt sqt3r2T

˜ ˜ 4 a aŽ . Ž .and from Eq. A.3 , the expectation of the remaining term, A PA y a rT c cs t t s

is asymptotically:
4 4a aasy

a a˜ ˜E A PA y c c s Õs t t s st2T T

and summing the last two terms gives:

2a 2s 2
asy u a aCov c ,c sE c c yE c E c s c qcŽ .ˆ ˆ ˆ ˆ ˆ ˆŽ .t s t s t s syt sqt3

2T
Ž y3r4.which is O T . Combining this result with the fact that plim of thep T ™`

Ž . 2 Ž .denominator of Eq. 2.7 is s and with Eq. 2.8 yields:u

2 aa casy t'T r ;NN ,I 2.11Ž .ˆt 2ž /su

2.2. The weighted autocorrelogram test statistic

We now proceed to find the most powerful test. We proceed by first deriving
the optimal test among the class of tests that are linear functions of autocorrela-
tions, and then showing in Section 2.4 that this linear test is optimal among all

Ž .functions of the autocorrelations. Since the autocorrelations plus the variance
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summarize the properties of any series that has an ARMA representation, this test
will be globally optimal.

We define the weighted autocorrelogram test statistic as:

Âs w r 2.12Ž .ˆÝ t tž /
t

where, without loss of generality, the length of the vector of weights is normalized
to one:

w2s1 2.13Ž .Ý t

t

Ž . Ž .From Eqs. 2.7 and 2.11 we have that:

a 2 1asy
a 2Â;NN w c , wÝ Ýt t t1 T� 0t t

22s Tu

2aasy
aˆ'T A;NN w c ,1 2.14Ž .Ý t t2ž /su t

ˆ'Notice that both the mean and the variance of the distribution of T A are
Žindependent of T. This means that the probability of rejection as T™` is in 0,

. Ž . y1r41 . Had we written the DGP in Eq. 2.1 with an exponent of T , this would
not have been the case.

If our alternative hypothesis does not suggest a sign for a , we will use the test
ˆ2 2Ž .statistic TA , which based on Eq. 2.14 , has a noncentral x distribution with one

degree of freedom and with noncentrality parameter NCP.

4 2a
aNCPs w c 2.15Ž .Ý t t4 ž /su t

Ž . 2Since under the null hypothesis as0 this statistic has a central x distribution,1

to maximize the power of the test under the local alternative represented by the ãt
Ž .DGP in Eq. 2.1 , the weight v must be chosen to maximize the noncentralityT

Ž .parameter NCP , subject to normalization constraint that the sum of the squares of
the weights equals 1.

The intuition behind this result is illustrated in Fig. 1, where x 2 density1
ˆ2functions with NCPs of 0, 2, and 4 are plotted. Since the test statistic TA for any

Ž . 2set of weights satisfying Eq. 2.13 has a central x distribution under the null, a
single critical value will give all tests the same size. For example, a critical value
of x )s3.84 gives all tests a size of 5%. Maximizing the power of the test is then
equivalent to choosing the test for which it is most likely that the test statistic will
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Fig. 1. Test power as a function of the noncentrality parameter.

exceed the critical value of 3.84 given the alternative is true. In other words, we
need to find the value of the NCP which maximizes the integral

`
2x NCP x d xŽ . Ž .H 1

)x

Because a x 2 distribution with a larger NCP first-order stochastically dominates a
x 2 with a lower NCP, the test which has the highest NCP will always maximize
this integral, regardless of the size or critical value we choose.

To determine the set of weights which maximizes the NCP, we solve the
Lagrangian:

LLs w cayl w2y1Ý Ýt t tž /
t t

Taking the first-order conditions gives the optimal weights:
ELL ca

t
)s0´w st

Ew 2lt

ELL
) 2s0´ w s1Ý t

El
t

or, simplifying:
ca
t

)w st a2cÝ t(
t
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That is, the optimal weights are proportional to the autocorrelation expected under
the alternative hypothesis.

Note also that, given a set of weights, we can recover the implicit alternative of
a test, which is the alternative against which the test has the greatest possible
power. This can be useful in providing some intuition as to what sort of
alternatives a given test will have power against. In Sections 3.1 and 3.3, we will
examine the implicit alternatives of variance ratio and long horizon regression test
statistics.

Finally, the power of a weighted autocorrelogram test against a specified
alternative can be summarized by the parameter

2
aw cÝ t tž /

t2cos Cs 2.16Ž .
2 a2w cÝ Ýt tž / ž /

t t

Ž .Using this parameter, the NCP as given in Eq. 2.15 can be written as:

a 4 ca2Ý tž /
t 2NCPs cos C4su

The geometric interpretation of this test statistic is explored in the next section
Ž . 2Section 2.3 . From this equation it is clear that when the value of cos C is 1, the
test will be an optimal test, and when the value is zero, there will be no power
against the alternative5, as will be explained in more detail in Section 2.3.

2.3. A geometric interpretation of the weighted autocorrelogram test

Before we prove the general optimality of the autocorrelation test, it is useful to
consider a simple geometric interpretation of the test power results from the
previous section. First, note that the set of r ’s at different lags can be expressed asˆ

Ža vector in a p-dimensional space where p is the number of nonzero weights in
.the test statistics . In this coordinate system, the component of the sample

Ž . X Ž .autocorrelation r vector would be r s r , r . . . , r . Under both the nullˆ ˆ ˆ ˆ ˆ1 2 p

and alternative hypotheses, the p-vector r is distributed spherically, that isˆ
1Xw x w xE ryE r ryE r s IŽ . Ž .ˆ ˆ ˆ ˆ
T

where I is the p=p identity matrix. However, under the null hypothesis, it is
distributed about the origin and under the local alternative hypothesis r , it isˆ

5 Where by Ano powerB, we mean that the test has no power to discriminate between the null and
alternative, or alternatively that the distribution of the test statistic is the same under the null as under
the alternative hypothesis.
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centered at the point Ty1r2ac a, where c a is the p-vector of alternative autocorrela-
aX Ž a a a.tion, i.e., c s c , c . . . , c .1 2 p

ˆ2 2Ž .The test statistic TA sT Ý w r is therefore the square of the length of theˆt t

Ž .Xprojection of onto the vector of weights w, where ws w , w . . . , w , based on1 2 p

our restriction that the length of w is 1. The length of this projection will be
a 2

aŽ .normally distributed as in Eq. 2.14 , with mean Ý w c . Rewriting this int t t2's Tu

terms of the vector we have defined. We have:
2 < a <a casy

ˆ'T A;NN cosC ,1 2.17Ž .2ž /su

a < a <whereC is the angle between w and c , as is illustrated in Fig. 2 and c denotes
a ˆ2 2the length of the vector c . Again, the test statistic TA will be noncentral x1

ŽŽ 4 < a < 2 . 4. 2distributed with NCPs a c rs cos C . Thus, to maximize the NCP, weu

want the vector of weights to point in the same direction as the vector of expected
autocorrelations, as this results in a C of zero and the maximum achievable value

2 Ž .of cos C . On the other hand, if Cs pr2 , then we are looking in a direction
perpendicular to that in which we expect to see deviations, and the test will have
no power.

Fig. 2. A geometric interpretation of the weighted autocorrelogram test.
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2.4. Proof of optimality for a general class of functions of autocorrelations

So far, we have only shown that this test is optimal among the class of test
which are linear functions of the set of sample autocorrelations. We now show
that this result holds for all functions of the p-vector of sample autocorrelations.

Ž . p � 4First note any test T r : R ™ accept H , reject H is a mapping from theˆ 0 0

vector of autocorrelation to a binary choice variable. Therefore, we can describe
the test by the rejection region V;R n, which is the set of autocorrelation vectors
rgR n, which are mapped into reject.ˆ

Specifying the globally optimal test is equivalent to specifying the rejection
�n,a4Ž .region V such that the probability of Type I error is minimized. Letting f P :

R n™R denote the probability density functions under the null and the alternative
and Vdenote the complement of V or the acceptance region, this optimization
problem can be written as:

max f a r d r such that f n r d rsaŽ . Ž .ˆ ˆH H
V V V

Differentiating the Lagrangian yields a first-order condition for maximization: that
on the boundary of the region, which we denote by z;R ny1, the ratio of the
density functions under the alternative is a constant:

af rŽ .ˆ
sl 2.18Ž .nf rŽ .ˆ rgzˆ

To prove the optimality of the linear weighted autocorrelation test, we need to
show that the manifold z is defined by wXrsl;rgz for some w.ˆ ˆ

Ž . Ž .To show this, we note that under the assumptions given in Eqs. 2.1 – 2.5 , the
autocorrelation vector r is asymptotically distributed multivariate normal with aˆ
variance–covariance matrix equal to s 2 I, and that, therefore, the distributions
under the null and alternative are given by:

1 1
Xnf r s exp y r I rŽ .ˆ ˆ ˆ2n ž /2 2s( 2p sŽ .

and

1 1 Xa a af r s exp y ryr I ryrŽ . Ž . Ž .ˆ ˆ ˆ2n ž /2 2s( 2p sŽ .

where r a is the vector of autocorrelations under the alternative hypothesis. Now
define the idempotent matrix M as

r ar aX

Ms Iy Xa až /r rŽ .
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With this we can write the log of the ratio of the alternative and null probability
density functions as:

f a rŽ .ˆ X X2 a ay2s log s ryr M M ryrŽ . Ž .ˆ ˆnž /f rŽ .ˆ

r ar aX

Xa aq ryr X ryrŽ . Ž .ˆ ˆa až /r rŽ .
r ar aX

X X Xqr M M rqr X rˆ ˆ ˆ ˆa až /r rŽ .
which after some simplification, becomes:

f a r r XrŽ .ˆ ˆ a2y2s log s1y2 Xnž / ž /f r r rŽ .ˆ a a

We want to find the value r of which makes this equal to l. The value of r thatˆ ˆ
satisfies this restriction is:

1yl
rs rˆ až /2

Since this restriction is equivalent to the linear restriction derived earlier, this
means that the linear restriction is optimal.

2.5. Other forms of the optimal test

2.5.1. The spectral domain: an optimal weighted periodigram test
Ž .Durlauf 1991 proposes a spectral based method of assessing whether a time

series is a martingale. Basically, his method involves looking at the periodigram of
the first differences of the series: under the null hypothesis that the series is a
random walk, the expectation of the spectral density should be everywhere equal

Ž Ž ..to s 0 r2p . Thus, asymptotically, the periodigram should be iid with meanx
Ž Ž ..s 0 r2p , and based on this the expectation of the functionx

s 0Ž .l x
G l s I v y dvŽ . Ž .H Tž /2p0

Ž .is zero for all l under the null hypothesis. G l is the Acumulated periodigram.B
By definition, it will be equal to zero at ls0 and at lsp , and asymptotically,

w xit obeys a Brownian bridge process on 0, 1 under the null hypothesis. Durlauf
also suggests that if A . . . a researcher believes that the alternative to the martingale
model is a long-run mean reversion, maximizing test power might dictate an
examination of the low frequencies.B In this section, we show how Durlauf’s
intuition can be formalized, and how an optimal test in the spectral domain can be
constructed.
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We show that since the periodigram can be thought of as just a representation
of the autocorrelogram in another basis, the same intuition will apply here: the
researcher should apply weights to the periodigram estimates which are propor-
tional to the expected periodigram under the alternative.

The periodigram estimate of the spectral density is given by:
Ty11

yi jvI v s s j eŽ . Ž .ˆÝT x2p Ž .jsy Ty1

Ž . Ž . Ž .where s j denotes the sample autocovariogram at lag j. Since s j s yj ,ˆ ˆx x x

this can be rewritten as:
Ty11

yi jv i jvI v s s j e qe qs 0Ž . Ž . Ž . Ž .ˆ ˆÝT x xž /2p js1

Consider the following modified spectrum:
Ty1I v 1 1Ž .TX yi jv i jvI v s y s r j e qeŽ . Ž . Ž .ˆÝT x

s 0 2p 2pŽ .ˆx js1

If we define the quantity:

f j,v s ei jvqeyi jv s2cos jvŽ . Ž . Ž .
we see that the modified spectrum is given by:

Ty11
XI v s f j,v r jŽ . Ž . Ž .ˆÝT x2p js1

Ž . � 4 Ž .For v s 2kp rT , kg 1, Ty1 , f P has the following properties:k

Ty1
0 k/ lE f j,v f j,v sŽ . Ž .Ý k l ½2T ks l

js0

Using this property and the fact that, asymptotically,
asy'T r;NN 0,IŽ .ˆ

we have that:
XE I v s0;kG1Ž .T k

0 k/ l°
X X ~ 1E I v I v sŽ . Ž .T k T l ks l¢ 22p

Ž . �In other words, the modified periodigram at frequencies v s 2kp rT, kg 1,k
4Ty1 is equivalent to the autocorrelogram in the sense that it is asymptotically

mean zero and serially uncorrelated.
As an intuitive way of seeing this result, recall that, asymptotically, the vector

of p autocorrelations is spherically distributed in p-dimensional space. Fourier
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transforming the sample autocorrelations to generate the spectrum is geometrically
just transforming the vector of autocorrelations into another orthonormal basis; in
this new basis, the vector must still be spherically distributed. Thus, we see that
the basis of periodigram estimates has the same attractive properties as the
autocorrelation basis and that, in fact, we can construct a weighted periodigram
test which will have the same optimality properties as the weighted autocorrelo-
gram test. Just as for the weighted autocorrelogram test, the weights of the optimal
test should be proportional to the expected periodigram value under the alternative
hypothesis.

2.5.2. An optimal instrumental Õariables test
We show in this subsection that another expression of the optimal test is a

regression in which the dependent variable is a one-period return and the indepen-
dent variable is the linear combination of past returns which is the optimal
predictor of the dependent variable, given that the alternative hypothesis is true.6

Since the orthogonality condition is based on the characteristic that under the
null hypothesis returns are not predictable using past returns, intuitively it seems
that the most powerful instrumental variables test for a given alternative would be
that for which the instrument was chosen to give the greatest possible predictive
power under the alternative. That is, the optimal dependent variable should be
w xE r NV , where V is the set of all past returns. We now demonstrate thatt ty1 ty1

this intuition is correct. We do this by showing that an instrumental variables test
w xusing the E r NV as the instrument is equivalent to the optimal weightedt ty1

autocorrelation test.
The best forecast of r given the set of past returns V will be given by thet ty1

projection of V onto r , which can be determined in a regression framework,ty1 t

that is
r sb x qet t t

where

rty1

rx s ty2t .� 0..

6 Ž .It has been noted by Hodrick 1992 that we can write any linear orthogonality condition involving
Ž .returns in this way. The test of the above orthogonality condition is equivalent to either: 1 a test of

whether a weighted average of future returns given by ÝS w r is predictable using the returns r ;ss1 s tqs t
Ž . S Xor to 2 a test of whether a weighted average of future returns Ý w r is predictable using thess0 s tqs

instrument ÝR wY r , where the weights obey Ý` wXwY sw ,and where the weights arers1 r tyr tsy` s tyr t

defined in this equation so that wXs0 for s-0 and s)S, and wYs0 for r-1 and r)R. Theses r

tests are all precisely equivalent to the weighted autocorrelogram test if the sample moment variance is
calculated under the null hypothesis and using only the single period variance. If the sample moment
variance is calculated in some other way, then the tests will still be asymptotically equivalent.
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We can use the OSL estimator of b here since under the local alternative the
residuals will be uncorrelated. Therefore,

r rty1 t

y1 y1X X X r rb̂s x x x r s x xŽ . Ž . Ž . ty2 tÝ .t � 0..

Ž X . 2Given the local-alternative assumption, we have that x x fTs I and thereforee

that the project coefficients are

ca
1

1
acbs 22 .su � 0..

The regression of the single period return on the optimal predictor of this return
under the alternative is therefore just a test of whether:

E r Pb
Xx s caE r Pr s0Ž . Ž .Ýt t t t tyt

t

is zero. This is of course the same as the optional weighted autocorrelation test.

3. The power of standard test for mean reversion

We now apply the method developed in the last section to analyze three
standard mean reversion tests: the long horizon regression, the modified long
horizon regression, and the variance ratio test. We show that these are asymptoti-
cally equivalent to weighted autocorrelation tests, calculated the vector of weight
implicit in each test, and discuss the implicit alternative of each of the tests. In
Section 3.4, we evaluate the power of these relative to an optimal test using
Monte-Carlo methods.

3.1. The long horizon regression

Ž .Long horizon return regressions were used by Hansen and Hodrick 1980 to
study forward rate predictions of exchange rate movements and later by Fama and

Ž .French 1988a to investigate autocorrection in stock returns. The intuition behind
using a long horizon regression was that such a test could capture behavior such as

Ž .the long swings proposed by Summers 1986 because, in aggregating returns, the
price movements due to the ApredictableB long swings would be aggregated, while
the white noise components would be averaged out.

ˆŽ .Consider the OLS regression coefficient b for the regression

r t ,tqt sa t qb t r tyt ,t qe t ,tqtŽ . Ž . Ž . Ž . Ž .
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Ž .where r t,tqt represents the stock’s return from t to tqt . The consistent
Ž .OLS estimator of b t is given by

cov r t ,tqt , r tyt ,tŽ . Ž .Ž .ˆ
b̂s 3.1Ž .2s r tyt ,tŽ .Ž .ˆ

We can use the linearity of the covariance operator to write the OLS regression
Ž .in Eq. 3.1 as:

2 r

min s,2tys cov r ,rŽ . Ž .ˆÝ t tqs
ss0

b̂s 2s r tyt ,tŽ .Ž .ˆ

Because overlapping observations are used, the residuals of the regressions will
be correlated and the OLS standard error cannot be used. To compute the standard

ˆ Ž .error of b , Hansen and Hodrick 1980 propose estimating residual autocorrela-
Ž .tions at all lags up to the return horizon i.e., up to ty1 months , and then

calculating the standard error using a weighted sum of these autocorrelations.
Ž .Richardson and Smith 1991 propose calculating the variance–covariance matrix

for the residuals assuming the null-hypothesis is true. Both methods result in
consistent estimation of the residual variance–covariance matrix V under the

7 ˆŽ .local alternative. Given this, a consistent estimator of the variance of byb

will be:
X y1 y1X X Xˆ ˆ ˆE byb byb s X X X V X X XŽ . Ž .Ž . Ž .

ˆwhere V is the variance–covariance matrix of the residuals which, under the null
< <hypothesis, is a block diagonal matrix where V s0 for iy j Gt .i , j

Under the local alternative we then have that:
asy

2 < <V ™s max ty iy j ,0Ž .i , j 0

2tasyy1 y1 2X X X 2ˆX X X V X X X ™s min s,2tysŽ . Ž . Ž .Ý0 ž /
ss0

asy
2 2s r tyt ,t ™tsŽ .Ž .ˆ 0

2t min s,2tysasy Ž .
t™ rtˆÝ

2t
ss0

2min s,2tysŽ .Ý)
ss0

7 Ž .However, Richardson and Stock 1991 have pointed out that this estimator will have poor small
sample properties when the sample size is not considerably larger than the aggregation interval.



( )K. DanielrJournal of Empirical Finance 8 2001 493–535 511

where s 2 is the single period return variance. Thus we see that the t-statistic is0

asymptotically equivalent to a weighted autocorrelation test, which has power
against an MA process with lag polynomial weights as show in Fig. 3.

( )3.2. The modified long horizon regression Jegadeesh, 1990

Jegadeesh addresses the question of the power of the Fama and French
Ž .regression against an AR 1 fads alternative such as that discussed in Section 3.4.1

of this paper. He looks at a generalized long horizon regression of the form:

R sa J , K qb J , K R qeŽ . Ž .t , tqj tyK , t t

and assesses the power of the test as a function of the parameters J and K, using
Ž .the Geweke 1981 approximate slope coefficient as a measure of the test power.

He finds that test power is maximized with Js1 However, he also finds that the
optimal value of K is dependent on the parameterization of the fads alternative

Ž .chosen in the process given in Eq. 3.3 : the closer f is to 1, the greater the
optimal value of K.

The intuition for this result can be seen by referring to Fig. 6, which gives the
Ž .autocorrelogram of returns generated by the AR 1 fads model. Under the fads

alternative return, autocorrelation is negative at all lags, and is proportional to ft ,
where t is the lag length. To maximize the power of the modified long horizon
regression, we need to choose J and K such that the pattern of effective weights

Fig. 3. Equivalent lag polynomial weights of long horizon regressions.
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Fig. 4. Equivalent lag polynomial weights of modified long horizon regression.

will most closely resemble those in Fig. 6, that is choose w to maximize Ý w ca.t t t t

The effective weights of the modified long horizon regression are given by:8

w smax 0,min t , JqKyt , J , KŽ .Ž .t

Or imposing the requirement that the sine over the squares of the weights be 1, we
have:

max 0,min t , JqKyt , J , KŽ .Ž .
w s 3.2Ž .t 12 3< <JyK min J , K q min J , K q2min J , KŽ . Ž . Ž .Ž .

3
and a plot of the normalized weights for values of Js1 and for J)1 are given in
Fig. 4.

We determine optimal weights for a set of f ’s ranging from 0.95 to 0.99 and
tabulate the results in Table 1. This is done by maximizing Ý w ft over J and K ,t t

Ž . Ž . awhere w is taken from Eq. 3.2 . Note that under the AR 1 fads alternative, c ist t

proportional to ft, so this maximization will yield an asymptotically optimal test
Ž .against the local AR 1 fads alternative. In addition to calculating these weights,

Ž .we also calculate the optimal return horizon for a Fama and French 1988a like
Ž .regressions where J is constrained to equal K , and calculate the value of

Ý w ft for these two tests and for the optimal weighted autocorrelation test,t t

where, for this alternative hypothesis, the optimal weights are given by
2 ty1(w s 1yf ft

8 Note that this is just a more general version of the equation for the long horizon regression
weights.
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Table 1
Optimal aggregation intervals and analytically calculated test power against a local alternative for

Ž . Ž .optimal weighted autocorrelation test WAC , modified long horizon regression MLH regression
Ž . Ž .Jegadeesh, 1990 , and long horizon regression LH regression

f WAC test MLH regression LH regression

Ž .Power Optimal J, K Power Optimal J Power

Ž . Ž .0.99 7.017 1, 125 or 125, 1 6.334 55 5.360
Ž . Ž .0.98 4.925 1, 62 or 62, 1 4.445 27 3.779
Ž . Ž .0.97 3.990 1, 41 or 41, 1 3.601 18 3.077
Ž . Ž .0.96 3.428 1, 31 or 31, 1 3.095 14 2.655
Ž . Ž .0.95 3.042 1, 25 or 25, 1 2.746 11 2.367

There are several apparent differences between Jegadeesh’s results and ours,
Ž .which are explained by his use of the Geweke 1981 approximate slope coeffi-

cient as opposed to our use of a measure of local power. Note that while Jegadeesh
finds that it is optimal to aggregate the independent variable and to use a single
period return for the dependent variable, we find that either the dependent or
independent variable may be aggregated, and the other variable should be a single
period return. The reason for the differences in the results is that our test is optimal
under a local alternatiÕe, while Jegadeesh determines optimality asymptotically,
but using a nonlocal alternative. To make the Geweke approximate slope coeffi-
cient equivalent to a test of a local alternative, we need to calculate it in the limit
as the variance of the temporary component of prices relative to the variance of

Ž .the permanent component 1rf in Jegadeesh’s notation goes to zero. When we
Ž .recalculate the approximate slope coefficient given on page 5 of Jegadeesh 1990 ,

we find both that the slope coefficient is the same whether the dependent or
independent variable is aggregated, and that the optimal aggregation intervals are
in agreement with those given in Table 1.

To see the reason why the Geweke approximate slope coefficient would dictate
that the independent variable be aggregated, while under the local hypothesis there
would be no difference, we can look at the regression coefficient for two
possibilities: if the dependent variable is an n period return and the independent
variable is a single period return, then the regression coefficient will be:

n
y1X X

b̂s x x y x s rtŽ . Ž . ˆÝ
ts1

while the independent variable is an s period return and the dependent variable is
a single period return then the regression coefficient will be:

r 2 t ,tq1Ž .Ýn
y1 tX X

b̂s x x y x s rŽ . Ž . ˆÝ t 2r t ,tqnŽ .Ýts1
t
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Under the null hypothesis or a local alternative, the ration of variances should be
1rs, but under a nonlocal alternative hypothesis, the ratio should be greater

Žbecause of the negative autocorrelation of returns just as the variance ratio should
.be less than 1 under the fads alternative . Thus, the T-statistic, which is just b

divided by the standard error, is more likely to be significantly greater than zero if
the independent variable is aggregated rather than the dependent.9

3.3. The Õariance ratio test

Ž .The variance ratio test has been used by Cochrane 1988 in testing for the
presence of a permanent component in production data, and by Poterba and

Ž . Ž .Summers 1988 and Lo and MacKinlay 1988 in testing for predictability in long
and short horizon stock returns, respectively. Additionally, Lo and MacKinlay
Ž .1989 have investigated the size of the variance ratio test for both homoskedastic
and heteroskedastic null hypothesis, and have calculated its power relative to the
Dickey–Fuller t-test and the Box–Pierce Q statistic for various alternatives
involving simple fads processes.

The variance ratio statistic for a return horizon J is the ratio of the variance of
J-period returns to J times the variance of one-period returns:

2T J1
r yJrÝ Ý tq jž /J ts1 js1

VR J sŽ . J
2

r yrŽ .Ý t
ts1

The intuition behind the use of the variance ratio test is that if returns are
uncorrelated, the variance of a return of a given horizon will be proportional to the
horizon and this ratio will be 1. If, however, transitory movements in prices due to
fads result in positive returns regularly being followed by negative returns, short
horizon returns will exhibit a proportionally higher variance. Using a multi-layer
variance ratio test, Poterba and Summers also find evidence of mean reversion at
long horizons for real returns on common stocks over the 1926–1987 time period.

9 Ž . Ž .Jegadeesh 1990 and Hodrick 1992 both point out the computational advantages of aggregating
over the independent variable in that under the null hypothesis, the regression residuals will then be
uncorrelated. However, as we have shown, it is straightforward to calculated standard error under the
null hypothesis when a regression with an aggregated dependent variable is corrected into a weighted
autocorrelation test.
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Fig. 5. Autocorrelation weights for variance-ratio equivalent tests.

Ž .As demonstrated by Cochrane 1988 , the variance ratio statistic is equivalent
to a test whether a weighted average of autocorrelations is equal to zero:

Jy1

Jy j r rŽ .Ý t tqj Jy1 JyN jNjs1
VR J s s rŽ . ˆÝ tT ž /Jjs1yJ2rÝ t

ts1

Thus, we see that the variance ratio test is precisely equivalent to a weighted
autocorrelation test in which the pattern of weights forms an inverted triangle as in
Fig. 5.

Note also that using the characteristics of the autocorrelation estimator given in
Ž . Ž . 10Eqs. 2.7 and 2.11 , one can easily show that

2 Jy1 2 Jy1asy Ž . Ž .'T PVR J ;NN 1,Ž . ž /3

Ž . Ž .which is in agreement with Lo and MacKinlay’s 1988 results in their Eqs. 14a
Ž .and 14b .

j jq1 2 jq1Ž .Ž .10 j 2Using the relation that Ý i s .is1 3
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3.4. Small sample properties of the tests

In this section, we perform a set of Monte-Carlo studies to study the small
sample size and power properties of the weighted autocorrelation test. We use as

Ž . Ž .an alternative hypothesis the AR 1 fads model of Summers 1986 , which has
been used extensively in the literature of mean-reversion test power. In Section
3.4.3, we present the power comparisons among the different test.

( )3.4.1. The AR 1 fads alternatiÕe hypothesis
Ž . Ž .The AR 1 fads model, suggested by Summers 1986 , is important from a

historical perspective in that has been widely cited and used as a basis for power
Žcomparisons see, e.g., Fama and French, 1988a; Poterba and Summers, 1988; Lo

.and MacKinlay, 1989; Jegadeesh, 1990; Hodrick, 1992 . Summers pointed out that
if stock prices were equal to the fundamental value plus a AfadsB component, this
fads component might not be detected in low-order sample autocorrelations. To
some extent, this observation prompted some of the long horizon regression and
variance ratio tests, which were later carried out. However, the AR1 fads
alternative is unsatisfying in that it is a model of overreaction rather than of
rational variation in expected returns. Moreover, it implies that stock returns will
be negatively autocorrelations at all lags, and the empirical evidence suggests that
short horizon returns are positively autocorrelated.

Ž . Ž .The AR 1 fads model posits that observed stock prices p embody both at
Ž ) .permanent component p , assumed to follow a random walk a drift, and at
Ž .stationary component u , assumed to follow an autoregressive process of ordert

one:

p sp)qut t t

p)sp) qmqe , e ; iid 0,s 2Ž .t ty1 t t e

u sfu qn , 0-f-1,n ; iid 0,s 2 3.3Ž .Ž .t ty1 t t n

The persistence of the temporary component in determined by f, while the share
of the total variance due to the temporary component, g , is defined by

2s 2
n

g' 3.4Ž .2 2s 1qf q2sŽ .e n

Ž .If e and n are independent, then the AR 1 fads model implies that demeanedt t
Ž . Ž . Ž .returns r 'D p ym, follow and ARMA 1,1 process 1yfL r s 1quL wt t t t

where:
1

2s 2n 22 2 2 2y 1qf s y2s q 1yf 4 q 1qf sŽ . Ž .Ž . e n e2s� 0e

us 2 22 s qfsŽ .n e

� 4 2 Ž 2 .and w is an uncorrelated sequence of errors with s sy fqs ru .t w Õ
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Under this hypothesis, the autocavariogram and autocorrelogram for the return
generating process are given by

2°
2 2s qs forts0n ež /1qf~c st 1yf

2 ty1ys f fortG1n¢ ž /1qf

m 2c s 1yfŽ .t nm ty1r s sy f fortG1 3.5Ž .t m 2 2c s 1qf q2sŽ .0 e n

Plots of the autocorrelation for several different values of f are provided as Fig.
6. From this figure, it is seen that the value of f controls the degree of persistence
of the temporary shocks: a value of f closer to 1 makes the shocks more
persistent. Note that a value of 1 would make the shocks permanent.

3.4.2. Analytical calculation of test power
Ž .Table 1 presents the analytically calculated test power values against the AR 1

fads alternative for the weighted autocorrelation test, the modified long horizon
Ž .regression Jegadeesh, 1990 , and the standard long horizon regression. This

analytical comparison shows that, for all values of f, the optimal test is most
powerful, and that the modified long horizon regression is superior to the standard

Ž .Fig. 6. Autocorrelogram of simulated AR 1 fads model.
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long horizon regression. We next confirm these analytical results for small
samples using a Monte-Carlo experiment.

3.4.3. Monte-Carlo results
We investigate the power of four tests against this alternative: the long horizon

Ž .regression with Hansen and Hodrick 1980 calculated standard errors; the long
horizon regression with standard errors calculated under the null hypothesis
Ž .Richardson and Stock, 1989; Richardson and Smith, 1991 ; the modified long

Ž .horizon regression Jegadeesh, 1990 ; and a weighted autocorrelation test with
weights given by:

2(1yf
iy1w s f for is1, . . . , 180 3.6Ž .i 360(1yf

Ž .which is optimal against the AR 1 fads alternative. All of the test statistics are
corrected for small sample bias using analytical corrections.

We use Monte-Carlo methods to calculate the size and power of the four tests.
First, we calculate the empirical size of the tests. We simulate 60,000 returns
series and compile the resulting test statistics to determine an empirical probability
distribution of the test statistic under the null, and from this distribution determine
the cutoff level for a size of 5%. We then simulate data under various parameteri-
zations of the alternative hypothesis, and again compile the test statistics into an

Fig. 7. Power comparison of weighted autocorrelation test, Jegadeesh regression, and FamarFrench
regression as a function of g , for fs0.95.
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empirical distribution. The reported empirical power is the fraction of the test
statistics which fall outside of the empirical cutoff value determined in the size
analysis.

We report Monte-Carlo determined power levels for f ’s of 0.95 and 0.98, and
Ž .for g ’s of 0.2, 0.4, 0.6 and 0.8. g , which is given in Eq. 3.4 , is the proportion of

the variance due to the temporary component.
Figs. 7 and 8 give the power levels for the four tests, for the set of g ’s, for a

significance level of 0.05, for a persistence parameters f of 0.95 and 0.98,
respectively. All power levels presented here are calculated using 20,000 simu-
lated returns series. In this and in Fig. 8, the return horizon used is that which
gives the highest power against the particular alternative being evaluated.

In this figures, note that the power level for gs0.0 is approximately 0.05,
which is to be expected since the alternative with gs0.0 is equivalent to the null,
and we have set the critical value so that the null will be falsely rejected 5% of the
time. As g increases, the power increases for all tests, but more quickly for the
weighted autocorrelation test. For these parameters, the weighted autocorrelation

Žtest is most powerful, followed by the modified long horizon regression labeled
.AJegadeeshB , followed by the long horizon regression using Hansen and Hodrick

Ž .standard errors labeled AFF-HHB , followed by the long horizon regression using
Ž .analytical standard errors labeled FF-R . Except for the relation between the

FF-HH test and the FF-R test, about which our asymptotic theory makes no
prediction, this is in agreement with the predictions as given in Table 1.

Fig. 8. Power comparison of weighted autocorrelation test, Jegadeesh regression, and FamarFrench
regression as a function of g , for fs0.98.
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Thus, the asymptotic predictions appear to be generally verified, although the
differences in the two long horizon regressions show that the asymptotic compari-
son is not a perfect predictor of test power in small samples. This issue is explored
further in Section 5.

4. Joint tests of weighted sums of autocorrelations

Ž .A number of studies including Fama and French 1988b and Poterba and
Ž .Summers 1988 have looked at a set of mean-reversion test statistics, and

calculated significance levels based on the most significant statistic. As Richard-
Ž .son 1993 points out, the statistical significance of the overall test should be

evaluated by jointly testing whether all coefficients are equal to zero. Richardson
Ž . 2and Smith 1991 propose a x joint test embedded in the GMM framework of

Ž .Hansen 1982 and use this joint test to evaluate the significance of Fama and
Ž .French’s and Poterba and Summer’s results. Jegadeesh 1990 uses the test to

evaluate the joint significance of his modified long horizon regressions.
The intuition behind the results in this section is best expressed in terms of the

geometric interpretation given in Section 2.3. There, we showed that a weighted
autocorrelation test statistic can be interpreted as the length of the projection of the
vector of autocorrelations onto a vector of weights. Here we show that a x 2 test
of whether a set of n weighted autocorrelation test statistics is zero is equivalent to
a test of whether the projection of the autocorrelation vector onto the n-dimen-
sional subspace spanned by the n weight vectors has a length zero.

An important implication of these results is that the x 2 joint test may lack
power against the very alternatives the econometrician is interested in. For
example, if he wishes to look for mean reversion in stock price data, without
having precise knowledge of the persistence of the mean reversion, he might elect
to run a set of n long horizon regressions and then test their significance using a
x 2 test. Even if the individual regressions have considerable power against the
alternative, the power of the joint test may be quite low. The reason for this is that
joint test looks for deviations from the null in the entire n dimensional subspace,
even if the alternative suggests deviations only in a particular direction within the
subspace.

We perform the analysis in this section within a GMM framework. All of the
tests we are concerned with are tests of whether returns are orthogonal to past
returns, and GMM framework is a general way of analyzing this type of

Ž . 2restriction. We establish the equivalence among the three tests: 1 a x or Wald
joint test of M regression coefficients or variance ratios, as in Richardson and

Ž . Ž . Ž .Smith 1991 ; 2 a GMM-test of a set of M overidentifying restrictions; and 3 a
x 2 joint test of a set of M weighted autocorrelogram tests. For expositional
reasons, we show this equivalence in terms of long horizon regressions, though the
method is applicable to any joint test of any regressions, moment restrictions, or
variance ratio tests.
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4.1. The long horizon regression in a GMM framework

A single long horizon regression can be written in a generalized instrumental
Ž . Ž .variables framework by noting that the OLS estimates of a t and b t are based

w Ž .x w Ž . Ž .xon the moment restrictions that E e t, tqt s0 and E e t, tqt r t, tqt

Ž . Žs0: that is, on the restriction that the regression residual e t, tqt sr t,
. Ž . Ž . Ž . Žtqt ya t yb t r tyt , t be orthogonal to the instruments of 1 and r t,
.tqt . These two orthogonality conditions are used to estimate the system of two

unknowns. In the GMM framework, we can represent these restrictions in the
following way:

T1
g u s g uŽ . Ž .Ýt tT ts1

T1 r t ,tqt ya t yb t r tyt ,tŽ . Ž . Ž . Ž .
s Ý ž /r t ,tqt ya t yb t r tyt ,t r tyt ,tŽ . Ž . Ž . Ž . Ž .T ts1

4.1Ž .
Ž Ž . Ž ..XThe GMM estimator of us a t b t then minimizes the distance of the

Ž . Ž .Xsample moment vector g u from zero. This is done by minimizing g ut t
Ž .W g u , where W is some weighing matrix. For this just-identified system, theT t T

choice of weighing matrix is unimportant since for some choice of u , every
Ž .element of the g u vector will be equal to zero.t

In general, there are more moment restrictions than variables to be estimated.
Ž .Hansen 1982 shows that in this case, the optimal weighing matrix is the inverse

Ž .of the variance–covariance matrix of g u evaluated at the true value of u , u :T 0
y1

`
X

) y1W sS s E g u g u 4.2Ž . Ž . Ž .Ý0 t 0 tyj 0ž /
jsy`

ˆand that, given this weighing matrix, u is consistent and asymptotically normally
distributed:

asy y1X y1ˆ'T uyu ;NN 0, D S D 4.3Ž .Ž . ž /0 0 0 0

where
Eg uŽ .t 0

D sE 4.4Ž .X0
Eu

This representation can be extended to jointly estimate a set of regression
coefficients. This results in the following set of just-identified moment equations:

r t ,tq j yb j r ty j,t r ty j,tŽ Ž . Ž . Ž . Ž .
T T1 1 ..g u s g u sŽ . Ž .Ý ÝT t .T Tts1 ts1 � 0r t ,tqk yb k r tyk ,t r tyk ,tŽ . Ž . Ž . Ž .

4.5Ž .
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where now the returns are demeaned and the intercept terms and corresponding
moment restrictions have been removed from the system.11 Note that, again, the
estimates of the b ’s will be identical to the OLS regression estimates since the
system is just identified. The D and S matrices can be constructed under the null0 0

Ž .hypothesis, following Richardson and Smith 1991 :

js 2 0
D s 4.6Ž .0 2ž /0 ks

j 1q2 j2Ž .
2j qs j,kŽ .

34S ss 4.7Ž .0 2k 1q2kŽ .
2� 0j qs j,kŽ .

3

2 Ž w 2 x.where s is the variance of a single period return E r and wheret

jy1

s j,k s2 jy l min j,ky lŽ . Ž . Ž .Ý
ls1

The variance–covariance matrix of the vector of b estimators then obtained by
Ž . Ž .matrix manipulation from Eqs. 4.6 and 4.7 .

2 j2q1 j2qs j,kŽ .
3 j jky1X y1ˆV b s D S D s 4.8Ž .Ž .Ž . 0 0 0 2 2j qs j,k 2k q1Ž .� 0
jk 3k

and the Wald test that the set of b ’s are equal to zero is given by

y1Xˆ ˆ ˆJsTb V b b 4.9Ž .Ž .
With this method, GMM is used to estimate the set of regression b ’s, and then a
separate Wald test is performed to determine whether the b ’s are jointly signifi-

ˆŽ .cantly different from zero, using V b as calculated analytically in the GMM

11 Ž .The test statistic Richardson and Smith 1991 propose is not equivalent to this test in small
Ž .samples because the estimated intercept terms a ’s obtained from estimating this overidentified

Ž .system are slightly different. However, since r is a consistent estimator of a t under our assumptions,
the tests will be identical asymptotically. We could set up an overidentified system in which the a ’s

Ž .were estimated using the moment restriction that E e P1 s0, but this would complicate the analysis˜t

without adding additional insight.
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framework. Alternatively, one could directly impose the moment restrictions
Ž Ž . .which encompass this restriction that b t s0;t)0 :

r t ,tq j r ty j,tŽ . Ž .
T T1 1 .X .g s g u s 4.10Ž . Ž .Ý ÝT t .T Tts1 ts1 � 0r t ,tqk r tyk ,tŽ . Ž .

Ž .Again, from Hansen 1982 , a test statistic that indicates the AdistanceB of this
model from the data is given by

X
X y1ˆ ˆJ sT g u S g u 4.11Ž .Ž . Ž .t 0 t

which is asymptotically x 2 distributed with n degrees of freedom.
Just as is done above, we can construct Sy1 under the null hypothesis, and0

Ž .from Eq. 4.2 , we see that when calculated under the null, S will be identical to0
Ž .the S given in Eq. 4.7 because under the null hypothesis, b is zero for all return0

) 4 Ž . )horizons. Now, we define S 'S rs , where, from Eq. 4.7 , S is now a0 0 0

function for j and k only. This means that we can construct an alternative S ,0

which we denote as S† , in the following way:0

2 2
s j s jŽ . Ž .

0 0
j j† )S s S0 02 2

s k s kŽ . Ž .� 0 � 00 0
k k

where
T1 22s j s r ty j,tŽ . Ž .Ý

T ts1

Ž 2Ž ..Since under the null hypothesis, s j rj is a consistent estimator of s , the
one-period return variance, S† is a consistent estimator of s 4S)sS .0 0 0

Ž † .y1 X Ž .When S is substituted into the definition of J in Eq. 4.11 , we obtain the0

following expression for the test statistic:

1 1
0 0

j jy1 y1X X X† )ˆ ˆJ sT g S g sTb S bŽ .Ž .t 0 t 01 1� 0 � 00 0
k k

^ ` _
y1ˆw Ž .xV b

Ž . Ž .Comparing this equation with Eqs. 4.6 – 4.8 confirms that the Wald statistic in
Ž .Eq. 4.9 and the test statistic for the overidentified GMM system given here are

identical.
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4.2. Asymptotic equiÕalence to a set of weighted autocorrelation tests

Ž .We show now that the test of the moment restrictions in Eq. 4.10 is
equivalent to the test of whether a set of weighted sums of autocorrelations are
zero. Using these results, we present in Section 4.3 an intuitive geometric
interpretation of the joint test.

Ž .First, note that the set of moment restrictions in Eq. 4.10 are equivalent to

2 j

min s,2 jys r rŽ .Ý t tqs
ss0t t1 1 ..g s g u s 4.12Ž . Ž .Ý Ýt t .t tts1 ts1 2 k� 0min s,2 kys r rŽ .Ý t tqs
ss0

Ž .Additionally, S will again be of the same from here as in Eq. 4.7 . However,0

since we can choose any consistent estimator of the single period variance in Eq.
Ž .4.7 , we now choose

T1
2 2 2s ss 1 s r ,Ž .ˆ Ý tT ts1

which is the variance calculated using one-period returns. The test of the overiden-
tifying restrictions can now be written

1 1y1Y XJ sTg S gŽ .T 0 T2 2s sˆ ˆ^̀ _ ^̀ _
X

) )g gT T

and

2 j r rt tqs
min s,2 jysŽ .Ý 2ž /rtss0T T1 1 .

) ) .g s g u sŽ .Ý ÝT t .T Tts1 ts1 2 k r rt tqs� 0min s,2 kysŽ .Ý 2ž /rtss0

2 j

min s,2 jys rŽ . ˆÝ s
ss0

..s .
2k� 0min s,2 kys rŽ . ˆÝ s

ss0
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so we see that the moment conditions are equivalent to restrictions that weighted
sums of autocorrelations be equal to zero. Using vector notation, we can rewrite

Ž .the moment conditions in Eq. 4.13 as
X

w j rŽ . ˆ
.

) .g s 4.13Ž .T .
X� 0w k rŽ . ˆ

Ž . Ž Ž ..where w j is a k-vector whose ith element is max 0, min s, 2kys , and r is aˆ
k-vector whose ith element is the autocorrelation at lag i.

Note that when g) is expressed in this way, we can apply the asymptotict

relationship
XTEs rr sIˆ ˆ

to show that that S) , the variance–covariance matrix of g) , will be given by:0 t

X XX Xw j rrw j PPP w j rrw kŽ . Ž . Ž . Ž .ˆ ˆ ˆ ˆ
. ..X

) ) ) . . .S se g g s0 T T .. .
X XX X� 0w k rrw j PPP w k rrw kŽ . Ž . Ž . Ž .ˆ ˆ ˆ ˆ

X X
w j w j PPP w j w kŽ . Ž . Ž . Ž .

1 . ... . .s .. .T X X� 0w k w j PPP w k w kŽ . Ž . Ž . Ž .
which extensive algebraic manipulation reveals to be identical to the S)s0
Ž 4. Ž .1rs S given in Eq. 4.7 . Thus, when we express the regressions as weighted0

sums of correlations, we have a more straightforward way of deriving the
Ž . Ž .Richardson and Smith 1991 variance–covariance matrix as given in Eq. 4.8 .

Moreover, writing the test in this way leads to a simple geometric interpretation of
the test power, which we provide in the next section.

4.3. Geometric interpretation of the joint test

We can gain considerable intuition into the workings of the joint test by giving
the joint test power issue a geometric interpretation analogous to what was done
for the single weighted autocorrelation test in Section 2.3. Again, we consider a
p-dimensional space in which the set of sample autocorrelations is expressed as a

Ž .vector with elements r , r . . . , r . We showed in Section 2.3 that the testˆ ˆ ˆ1 2 p

statistic TA2sTÝ w r , was the square of the length of the projection onto theˆt t t

Ž .X 2vector of weights w, where ws w , w . . . , w , and that this statistic was x1 2 p 1
ŽŽ 4 < a < 2 . 4. 2distributed with NCP a c rs cos C under the alternative hypothesis,u

whereC is the angle between the vector c a and the vector of weights w. Since the
alternative hypothesis is noncentral x 2 distributed and the null hypothesis is1
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central x 2 distributed, we showed that the most powerful test will maximize the1

NCP, which is done by packing weights so that C is zero or p .
We can provide a similar interpretation of the joint test. Consider again the

joint test of a set of M long horizon regressions, as expressed by the set of
Ž .moment restrictions in Eq. 4.13 . If the test statistic

y1Y X
) ) ) 2J sT g S g ;x 4.14Ž .Ž .T 0 T M

is rewritten as

1
Y X XJ sTr W I Wrˆ ˆž /T

where
X

w jŽ .
..Ws .

X� 0w kŽ .
We see that J0 is the square of the length of the projection of r onto theˆ

Ž .M-dimensional manifold or subspace , which is spanned by the M eigenvectors
Ž . Ž .w j . . . w k .
Additionally, just as in Section 2.3, the distribution of the joint test statistic J0

2 ŽŽ 4 < a < 2 . 4. 2is x distributed with NCP a c rs cos C where C is now the angleM u

between the vector of autocovariances c a and the M-dimensional manifold con-
taining the weight vectors.

For this setting, the power of the test will depend both on the angle C and on
Ž .the number of restrictions M. The most powerful test will both maximize cos C

and minimize M. However, when the alternative hypothesis is known precisely,
there will be some tradeoff: increasing the dimensionality of the W matrix may

Ž .decrease the expected value of cos C , thus increasing the expected NCP of the
test statistic, but it will also increase the number of degrees of freedom of the test
statistics x 2 distribution. An extreme example of this is Box–Pierce Q test, which
is the joint test of whether each of the p autocorrelations is zero: for this joint test,
any process is an implicit alternative, but of course it will have a very little power
against any specific alternative.

Fig. 9 illustrates the problem with the method of using a x 2 joint test of the
significance of a set of tests. Suppose the econometrician was using the first three
autocorrelations to investigate mean reversion, and he believes that each of the
three autocorrelations are likely to have roughly equal positive values. He might
then run a joint test of three weighted autocorrelation tests using the weight
vectors illustrated in Fig. 9. Each of these three tests would, individually, be
powerful against the alternative. But, as our analysis shows, the joint test will have
considerably lower power: while the econometrician wishes to place large weight
on sample autocorrelations, vectors in a narrow region of R3 he is in fact puttingq
equal weight on deviations in any direction in R3.



( )K. DanielrJournal of Empirical Finance 8 2001 493–535 527

Fig. 9. A geometric illustration of the joint test problem.

Another way of stating this intuition is to say that when the number of
restrictions being tested is increased, the AlargerB the manifold of implicit alterna-
tives becomes. The greater the dimensionality of this manifold, the greater the
number of unreasonable alternatives the test is likely to have power against, and
the lower the tests power against reasonable alternatives. We show in Section 5
that other types of joint tests can have greater power.

5. Small sample size and power of long horizon regression methods

Ž .Fama and French 1988a perform the following long horizon regression on the
CRSP, EW, VW and size decile portfolio real returns for 1926–1986.

R sa t qb t R qeŽ . Ž .t , tqt tyt , t t

The regressions are done for return horizons of 1, 2, 3, 4, 5, 6, 8 and 10 years,
Ž .using monthly data, and the consistent OLS coefficients are calculated. A

T-statistics is used as a test of statistical significance,

b̂ tŽ .
T t s 5.1Ž . Ž .

sêb
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where, because of the overlapping observations and the resulting correlated
Ž .residuals, seb is calculated using the Hansen and Hodrick 1980 method.ˆ

Fama and the French find that for the EW index and for size deciles 1–7, the
Ž .slope coefficient for a return horizon of 4 years 48 months is more than 2

standard errors from 0. Additionally, the slope coefficients for return horizons of 3
and 5 years are significantly different from 0 for a number of the portfolios. Fama
and French conclude from this that there is evidence of mean reversion in the
stock prices of small firms over the 1926–1986 period.

However, the Fama and French evidence is not unambiguous. First, Richardson
Ž .1993 challenges the statistical reliability of the Fama and French results on the
ground that the test does not properly account for implicit multiple comparisons.
That is, one cannot conclude from the statistical significance of the regression
coefficient at a single return horizon that there is evidence of mean reversion; a
joint test of significance of the coefficients at all eight return horizons must be
conducted. Using this test, Richardson finds that the stationary random walk
hypothesis cannot be rejected over the 1926–1986 sample period.

Ž .Second, Richardson and Stock 1989 suggest that the asymptotic standard
errors used by Fama and French and by Richardson and Smith are flawed because
of bad small sample properties. They suggest another asymptotic method of

ˆcalculating the b standard errors, which is based on holding the return horizon at a
constant fraction of the sample size as the length of the data series goes to infinity.
They show that the JrT limiting distribution calculated under these assumptions
has much better small sample properties than the conventional asymptotic distribu-
tion, and finally, they show that even the indiÕidual Fama and French regression

Ž Ž . .coefficients b t ’s are statistically insignificant when the significance is deter-
mined using the JrT asymptotics. They, therefore, concluded that statistical
significance of the individual slope estimates that Fama and French finds is due to
the poor small sample properties of the Hansen and Hodrick estimator.

We point out in this section that, while both of these critiques are well founded,
their conclusions that the long horizon test statistics presented by Fama and French
do not allow rejection of the null hypothesis are due to the use of a different test:
Fama and French use HansenrHodrick calculated T-statistics while Richardson

Ž .and Smith 1991 and Richardson and Stock use statistics calculated under the null
hypothesis of no serial correlation. While these two statistics are asymptotically
equivalent, their power differs in small samples, as was demonstrated in the
Monte-Carlo results in Section 3.4.3.

We show in this section that if the small-sample corrected p-values of the
ˆŽ . Ž .HansenrHodrick T t statistic are used instead of the p-values for the b t

statistic, there is still evidence of mean reversion like. Therefore, the reversal of
Fama and French’s conclusion is not due to the small sample properties of the
estimator, as claimed, but rather to the difference in power of the two tests.

ˆŽ .In addition, we show that the poor small sample properties of the b t statistic
can largely be corrected by adjusting the OLS regression coefficient, the weighting
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matrix and sample autocorrelations in the Hansen and Hodrick standard error
calculation for small sample biases: Once these corrections are made, the small
sample properties of the asymptotic statistics are greatly improved.

5.1. Calculation of the small sample distribution

ˆŽ .We begin by deriving analytically the small-sample bias of the b t , whichOLS

is available on request from the author. Though tedious to derive, the intuition for
the small sample bias is simply that a demeaning series induces negative serial
correlation. As an extreme example, consider calculating the first-order serial
correlation based on two observations: the calculated value will always be
negative because once the observations are demeaned, one of them will be positive
and the other negative. Next, using Monte-Carlo methods, we calculate the

ˆŽ .empirical distribution of the b t OLS with and without the bias adjustment, for a
Ž .sample of 720 points the length of Fama and French’s sample . This was done for

return horizons of 12, 24, 36, 48, 60, 72, 96 and 120 periods, corresponding to the
1-, 2-, 3-, 4-, 5-, 6-, 8-, and 10-year horizons used by Fama and French and
Richardson and Stock. The cumulative empirical distribution without the bias
correction is plotted in Fig. 10.

Fig. 10. FamarFrench regression—cumulative distribution of HansenrHodrick T-statistic–Monte-Carlo
results—no bias correction, 720 points, 20000 iterations.
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Fig. 11. FamarFrench regression—cumulative distribution of HansenrHodrick T-statistic–Monte-Carlo
results—bias correction, 720 points, 60000 iterations.

Fig. 10 shows that, as demonstrated by Richardson and Stock, for long return
Ž .horizons, the OLS b t estimator has a small sample distribution that is clearly

not well represented by a mean-zero normal. Also, as they point out, the likelihood
of negative values is quite high under the null hypothesis. However, Fig. 11 shows
that the distributions of the bias-adjusted T statistics for return horizons of 1–6
years are almost identical to the asymptotic distribution, and that for the return of
8 and 10 years, the distribution is actually narrower: the probability of extreme
negative values is lower than what is predicted by asymptotic theory.12

5.2. Empirical results

We performed the long horizon regression tests for real returns using the
ˆŽ .bias-adjusted HansenrHodrick T statistics. We present the regression b t ’s in

12 The bias correction appears to be slightly too-small here, in that for all return horizons except 8
and 10 years, the mean of the distribution is somewhat negative.
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Table 2
Fama and French regressions—real returns: 1926–1985—with significance levels based on small sample empirical distribution

ˆSize decile Bias adjusted b ’s and p-values
portfolio Return horizon

1 2 3 4 5 6 8 10

) † ) )Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .EW y0.05 0.342 y0.23 0.077 y0.33 0.027 y0.37 0.011 y0.35 0.023 y0.13 0.254 y0.12 0.690 0.31 0.850
) †Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 0.02 0.582 y0.14 0.197 y0.26 0.088 y0.39 0.024 y0.34 0.046 y0.06 0.397 0.39 0.951 0.64 964

) )) ))Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .2 0.01 0.558 y0.12 0.229 y0.26 0.075 y0.42 0.006 y0.45 0.003 y0.27 0.064 0.01 0.493 0.17 0.696
) ) )Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3 y0.04 0.394 y0.17 0.140 y0.28 0.051 y0.37 0.011 y0.36 0.017 y0.18 0.158 y0.04 0.386 0.06 0.539
) ) )Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4 y0.02 0.450 y0.11 0.251 y0.21 0.116 y0.35 0.010 y0.38 0.006 y0.20 0.111 0.00 0.473 0.14 0.696

† ) †Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .5 y0.05 0.356 y0.22 0.084 y0.29 0.044 y0.32 0.025 y0.32 0.030 y0.16 0.205 0.05 0.570 0.24 0.790
† ) †Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .6 y0.05 0.327 y0.20 0.099 y0.32 0.032 y0.33 0.018 y0.29 0.046 y0.09 0.310 0.08 0.622 0.23 0.763

† †Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .7 y0.06 0.300 y0.26 0.048 y0.33 0.025 y0.26 0.058 y0.20 0.143 y0.01 0.482 0.14 0.704 0.21 0.722
† †Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .8 y0.06 0.317 y0.23 0.071 y0.31 0.029 y0.24 0.049 y0.18 0.135 0.03 0.580 0.17 0.763 0.24 0.776

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .9 y0.03 0.403 y0.22 0.085 y0.28 0.053 y0.15 0.209 y0.02 0.488 0.21 0.842 0.34 0.878 0.33 0.799
† †Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .10 y0.06 0.303 y0.25 0.050 y0.29 0.041 y0.14 0.230 0.00 0.532 0.21 0.848 0.34 0.876 0.30 0.790

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .VW y0.03 0.399 y0.21 0.096 y0.26 0.072 y0.10 0.301 0.06 0.642 0.26 0.890 0.36 0.884 0.30 0.781

HansenrHodrick T-statistics
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .EW y0.46 y1.64 y2.29 y2.85 y2.35 y0.71 0.46 0.80
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 0.15 y0.98 y1.57 y2.39 y1.96 y0.30 1.46 1.45
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .2 0.08 y0.84 y1.68 y3.14 y3.42 y1.65 0.04 0.45
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3 y0.32 y1.22 y1.92 y2.84 y2.51 y1.08 y0.17 0.18
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .4 y0.18 y0.76 y1.40 y2.89 y3.10 y1.31 0.01 0.44
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .5 y0.43 y1.59 y2.00 y2.37 y2.21 y0.88 0.21 0.64
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .6 y0.51 y1.47 y2.20 y2.56 y1.96 y0.53 0.32 0.58
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .7 y0.59 y1.93 y2.33 y1.86 y1.21 y0.08 0.49 0.49
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .8 y0.53 y1.70 y2.26 y1.97 y1.25 0.17 0.64 0.60
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .9 y0.30 y1.58 y1.88 y0.95 y0.08 0.93 1.02 0.66
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .10 y0.57 y1.90 y2.05 y0.88 0.02 0.94 1.00 0.63
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .VW y0.32 y1.49 y1.69 y0.62 0.30 1.14 1.05 0.61

†denotes a p-value- 0.05.
)denotes a p-value- 0.0025.
))denotes a p-value- 0.01.
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the upper parts of Table 2. The HansenrHodrick T-statistics for each of these
coefficients are given at the bottom of each table, and empirical p-values for these
T-statistics are given under each coefficient. These p-values are calculated from
the Monte-Carlo results plotted in Fig. 11 and are, therefore, correct in small
samples.

Ž .The results here should be compared to those in Richardson and Stock’s 1989
Ž .Table 4. They find that three slope coefficients are significant at the two-sided

5% level. In contrast, we find that 11 slope coefficients are statistically significant
Ž .at the two-sided 5% level.

Based on the problems with the x 2 joint test discussed above, we use a
different statistic: we look at the most significant of the eight Fama French
regression coefficients. Supposedly, the reason for performing a number of
regressions in the first place is that since the optimal test return horizon is
dependent on the parameters of the alternate hypothesis, regressions should be run
for a range of return horizons corresponding to the range of parameter values in
the prior distribution. The acceptance or rejection of the null hypothesis should
then be based on a joint test of regression coefficients. However, we have shown
that while the regression test may be powerful against one of the range of
alternative hypotheses for a single regression, the power of the x 2 joint test
against the entire range of alternatives may be only peripherally related to the
power of the individual regressions. Therefore, as a joint test, we use the most
significant statistic as a measure of the overall significance but statistically correct
for having selected this statistic from the set of regression coefficients.

In order to determine significance levels, we empirically calculate the distribu-
tion of the most negative of the statistics as described before. Based on this joint
test, only the decile 2 returns exhibit evidence of mean-reversion at the 5%

Ž .two-tailed level. However, based on the stated alternative of the AR 1 fads
model, the one-tailed test is appropriate, and the EW and decile 2, 3 and 4
portfolios exhibit mean reversion at a 10% one-tailed level.

However, the economic significance of these results is still suspect based
Ž .Jegadeesh’s 1990 finding that all significant mean reversion appears to be due to

high returns of small firms in January, and to the severe heteroskedasticity in the
sample period.

6. Conclusions

We have developed a method that allows analytical calculation of the power of
tests of mean reversion. This method allows us to calculate the power of any
weighted autocorrelation tests. We have shown the equivalence of this test with
the long horizon regression test, the variance ratio test, weighted spectral tests, and

Ž .any instrumental variable or generalized method of moment GMM tests, which
use linear functions of past returns as instruments.
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This method has allowed us to make power comparisons tests of this class and
to determine the implicit alternative the tests. In addition, we have shown how to
determine the optimal test given a null hypothesis that returns are the sum of a

Ž .differenced martingale and an alternative process with an ARMA p, q represen-
tation: in this setting, the optimal test will be a weighted sum of the sample
autocorrelations at different lags, where the weights are proportional to the
expected return autocorrelations under the alternative hypothesis. We have also
provided a simple geometric analogy that gives the intuition for this result.

In the spectral domain, we have shown that the weighted autocorrelation test
can just as easily be written as a weighted periodigram test, with an analogous
result that the optimal weighted periodigram test will have weights proportional to
the expected periodigram under the alternative. This test shares the optimality
property of the weighted autocorrelogram test.

We have also addressed the issue of joint tests. We show that the results extend
easily to the case of multiple autocorrelation or instrument restrictions as that in
the simple geometric intuition developed in the first part of the paper. An
important result of this section is that the power of a joint test of moment

Ž 2 .restrictions or x joint test of this sort may be only peripherally related to the
power of the individual tests.

Since our analytical test-power results are valid only asymptotically and under
local alternatives, we conducted Monte-Carlo experiments to investigate the
robustness of these results for small sample sizes and for nonlocal alternatives
found that the results were robust, at least for the limited set of alternatives we
consider.

Finally, we have shown how small differences in the small sample properties of
a test can lead to strikingly different statistical inferences. We show that the long
horizon regression, which uses analytical standard errors, may have low power
against simple mean reverting alternatives, and that this, not poor small sample

Ž .properties, is the reason Richardson and Stock 1989 find no evidence of mean
reversion using this test. We empirically calculate the small-sample corrected
distribution for the Fama and French T-statistics, and find more evidence in favor
of a mean reversion hypothesis.
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Appendix A. The statistical properties of the sample estimators under the
local alternative

If a process is described by:

u L x sf L U u; IID 0,s 2 A.1Ž . Ž . Ž .˜ Ž .t t u

Eu4shs 4-` A.2Ž .
Ž . Ž . Ž . Ž .where f L and u L are finite-order lag polynomials, and where f z ru z has

Ž . Ž .roots outside the unit circle for stationarity , then Brockwell and Davis 1991
show that if we define the vectors of covariances and correlations in the following
way:

x xc rˆ ˆ0 0
. .

x x. .c ' r 'ˆ ˆ. .
x xc rˆ ˆh h

where
Tyt x1 ĉtx xc ' x x r 'ˆ ˆÝt t tqt t xT ĉ0ts0

then c x and r x will have the following asymptotic distributions:ˆ ˆ

c x;NN c x ,Ty1 V A.3Ž . Ž .ˆ

r x;NN r x ,Ty1 W A.4Ž .Ž .ˆ

where the elements of the variance–covariance matrices V and W are given by:
`

� 4Õ s hy3 c c q c c qc cŽ . Ýi j i j k kyiqj kqj kyi
ksy`

`

2 2 2w s r r qr r q2r r r y2r r r y2r r r� 4Ýi j kqi kqj kyi kqj i j k i j kqj j k kqi
ksy`

Under the assumption that x is generated by a stationary, finite-order ARMAt

process, each of these elements is finite.
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