Introduction	SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
00000	0000	00	00	0000	0000

The Fama-French factor portfolios

Kent Daniel

Columbia Business School and NBER

The Chicago School of Finance at 125 13 October 2023

Introduction	SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
0000	0000	00	00	0000	0000
Introduction					

- Field's goal is to learn about the mapping from information into asset prices.
 - Alternatively, what is the sdf that links prices to future cashflows?
- Multifactor models of the sdf posit that:

$$m^* = a + \mathbf{b}' \mathbf{f}^*$$
 with $\mathbb{E}[m^* r_i] = 0$

for any excess return r_i and traded "factors" f^* that span the MVE portfolio.

• Implying that

$$\mathbb{E}[r_i] = \beta_i \boldsymbol{\lambda}$$

where λ is the price of risk, and β_i is (the vector of) projection coefficients of r_i onto \mathbf{f}^* .

Introduction •0000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
Introduction					

- Field's goal is to learn about the mapping from information into asset prices.
 - Alternatively, what is the sdf that links prices to future cashflows?
- Multifactor models of the sdf posit that:

$$m^* = a + \mathbf{b}' \mathbf{f}^*$$
 with $\mathbb{E}[m^* r_i] = 0$

for any excess return r_i and traded "factors" f^* that span the MVE portfolio.

Implying that

$$\mathbb{E}[r_i] = \beta_i \boldsymbol{\lambda}$$

where λ is the price of risk, and β_i is (the vector of) projection coefficients of r_i onto \mathbf{f}^* .

• which is motivation for time series regressions like:

 $(R_{i,t}-R_{f,t}) = \alpha_i + \beta_{i,m} \cdot (R_{m,t}-R_{f,t}) + \beta_{i,SMB} \cdot SMB_t + \beta_{i,HML} \cdot HML_t + \epsilon_t$

Introduction	SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
00000	0000	00	00	0000	0000

Search for \mathbf{f}^* in in the Space of Returns

- How do we discover **f***?
- Timeline:
 - Chen, Roll, and Ross (1986) economic factors:
 - Evidence of that there were premia associanted with innovations in macroeconomic variables, but the Sharpe ratios associated with these portfolios were small.
 - Onnor and Korajczyk (1988) statistical factors using PCA:
 - effective in explaining the covariance structure, but all but the first PC—which looks like the market—did not carry much of a premium.
 - S Fama and French (1993) characteristic sorted portfolios:
 - Because of the strong relationship between characteristics and returns, the FF factor-portfolios earn a high premium.
 - We can then try to link the realized returns of these factor-portfolios to macroeconomic or other risk.

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
FF Factors					

- The characteristics-sorted portfolio approach pioneered by Fama and French (1993, 2015) is now standard in the asset-pricing literature.
- All of the FF factor-portfolios are value-weighted, are rebalanced infrequently (annually), and are based on sound economic logic.
 - They are examined using out-of-sample data in time and location.
- Fama and French (1993, 2015) develop, respectively, the 3- and 5-factor models
 - They explore aspects of these models more deeply in Fama and French (1995, 1996a,b, 1998, 2004, 2006a,b, 2008, 2012, 2015, 2016b,a, 2018)

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
Why BM?					

- Firm *i*'s market value $(ME_{i,t})$ should equal the present value of all future cashflows $(Y_{i,t+\tau})$.
- Suppose the ROIC on equity capital $(BE_{i,t})$ is κ for all firms *i*, so that the firm generates future cashflows to equity of:

$$Y_{i,t+\tau} = \kappa BE_{i,t}$$
 for $\tau \in \{1, 2, \dots, \infty\}$.

• Then, for a firm with a cost of equity capital of r_i :

$$ME_{i,t} = \frac{\kappa BE_{i,t}}{r_i}$$
 or $r_i = \kappa \left(\frac{BE}{ME}\right)_{i,t}$

So BM should be a proxy for the required rate of return on the firm's equity.
A mispricing argument would give a similar relationship between BM and future returns.

Introduction	SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
00000	0000	00	00	0000	0000
Why Prof	itability and	d Investment?)		

Fama and French (2015) motivate for the addition of the profitability (RMW) and investment (CMA) factors with the present-value relation:

$$\frac{M_t}{B_t} = \frac{\sum_{\tau=1}^{\infty} \mathbb{E} \left(Y_{t+\tau} - dB_{t+\tau} \right) / (1+r)^{\tau}}{B_t}$$

suggesting the following:

- **(**) Holding everything fixed except M_t and r, higher B/M implies higher r.
- **2** Holding everything fixed except expected future earnings $Y_{t+\tau}$ and r, higher earnings implies higher r.
- Holding everything fixed except expected required investment $dB_{t+\tau}$ and r, higher investment implies lower r.
- \bullet An interesting outstanding question is what factors lead to higher ROICs (Y/B)

Introduction 00000	SMB •000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
The size effect	ct – equal-	vs. value-weig	ghting – monthly	returns	

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
The size effe	ct – equal-	vs. value-wei	ghting – daily retu	urns	

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
Why Size?					

- Note that both Banz (1981) and Keim (1983) used equal-weighted portfolios.
 - This approach was standard at the time.
 - This likely explains their finding of a large unconditional size premium.
- The monthly CAPM alpha of the (VW) SMB portfolio is 0.06% (t=0.7)
- Given the lack of a size premium, why should we care about size/market cap?
 - The size factor is important in explaining the cross-section of realized returns.
 - Size interactions are important in describing other premia.

Introduction 00000	SMB 0000	Size and BM ••	Covariance Structure	Intangibles 0000	Borrow Costs
Size-BM Inte	raction				

Introduction 00000	SMB 0000	Size and BM ••	Covariance Structure	Intangibles 0000	Borrow Costs
Size-BM Inte	raction				

FF25 Corner Portfolio Cumulative Returns, 1926:07--2023:08

Introduction 00000	SMB 0000	Size and BM •0	Covariance Structure	Intangibles 0000	Borrow Costs
Size-BM Inte	raction				

Introduction 00000	SMB 0000	Size and BM •0	Covariance Structure	Intangibles 0000	Borrow Costs
Size-BM Inte	raction				

00000	0000		00	0000	0000
C: DIAL		1001 07 000			

Size-BM Interaction, 1991:07-2023:08

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
Hedging Unp	riced Risk				

- The firm characterstics used in portfolio sorts are potentially good proxies for expected returns, and *not* for the firm's loading on the priced factor.
- Equivalently, given a set of J characteristic-vectors **c**_j that proxy for expected excess returns:

$$oldsymbol{\mu} = \sum_{j=1}^J \lambda_j \mathbf{c}_j$$

a set of *characteristic-efficient* portfolios will span the MVE portfolio returns:

$$r_{MVE} = \mathbf{\Sigma}^{-1} \boldsymbol{\mu} = \sum_{j=1}^{J} \lambda_j \left(\mathbf{\Sigma}^{-1} \mathbf{c}_j \right)$$

• If characteristics are correlated with unpriced factor risk, the resulting characteristic-sorted portfolios will not be characteristic-efficient.

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
Hedging Unp	riced Risk				

- In Daniel, Mota, Rottke, and Santos (2020) we propse the use of a set of hedge-portfolio which are constrained to have zero-characteristics exposure, but are maximally correlated with the FF5 portfolios.
- For robustness, the portfolios are value-weighted, and rebalanced annually (following Fama and French, 1993).
- After hedging out the unpriced risk in the FF5 portfolios, SR^2 of the *ex-post* MVE combination of the portfolios increases from 1.17 to 2.13.
- Kozak and Nagel (2023) has an nicely updated approach to building characteristic-efficient porfolios.

US Market ME/BE Ratio, 1991:07-2023:07

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles ••••	Borrow Costs
Intangible Ca	ptial				

• Following Peters and Taylor (2017) and Park (2022), each fiscal year t, calculate Organizational Capital K_t^O and Knowledge Capital K_t^K as:¹

$$egin{array}{rcl} \mathcal{K}^{O}_t &= (1-0.2) imes \mathcal{K}^{O}_t + 0.3 imes \mathrm{SG\&A}_t \ \mathcal{K}^{K}_t &= (1-\delta^{RD}) imes \mathcal{K}^{K}_t + \mathrm{R\&D}_t \end{array}$$

where the industry-specific R&D depreciation rate δ^{RD} is taken from Li and Hall (2020).

- To calculate the *intangible-Adjusted Book Equity*, iBE, add K_t^O and K_t^K to standard book-equity, and subtract goodwill.
- Form portfolios in exactly the same way as Fama and French (1993) (VW, rebalanced annually) except using iBE in place of BE.

¹where SG&A_t is net of R&D expenses. Eisfeldt, Kim, and Papanikolaou (2022) propose an alternative intangible value calculation that they show provides further performance improvement.

Introduction	SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
00000	0000	00	00	0000	0000

Introduction	SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
00000	0000	00	00	0000	0000

Introduction	SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
00000	0000	00	00	0000	0000

Introduction	SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
00000	0000	00	00	0000	0000

Introduction 00000	SMB 0000	Size and BN 00	1	Covariance Struct	ure	Intangibles 0000	Borrow Costs
	 -				• · · ·		

Intangible-adjusted value portfolios-*Summary Statistics*

The mean annualized returns, volatilities, and Sharpe Ratios over the 1980:01–2020:06 period are:

	mean	std	SR
P/B-big	-0.1%	14.4%	-0.00
P/iB-big	3.5%	16.2%	0.22
P/B-small	8.6%	15.2%	0.57
P/iB-small	15.0%	11.2%	1.35

- The difference between the returns to the small-cap HML and iHML portfolios is 6.4%/year (t = 5.47).
- Note that we are defining big and small as the top 30% and bottom 30% of firms by Market Capitalization, based on NYSE breakpoints (consistent with FF 93).

Introduction 00000	SMB 0000	Size and BN 00	1	Covariance Struct	ure	Intangibles 0000	Borrow Costs
	 -				• · · ·		

Intangible-adjusted value portfolios-*Summary Statistics*

The mean annualized returns, volatilities, and Sharpe Ratios over the 1980:01–2020:06 period are:

	mean	std	SR
P/B-big	-0.1%	14.4%	-0.00
P/iB-big	3.5%	16.2%	0.22
P/B-small	8.6%	15.2%	0.57
P/iB-small	15.0%	11.2%	1.35

- The difference between the returns to the small-cap HML and iHML portfolios is 6.4%/year (t = 5.47).
- Note that we are defining big and small as the top 30% and bottom 30% of firms by Market Capitalization, based on NYSE breakpoints (consistent with FF 93).

Introduction SMB	Size and BM	Covariance Structure	Intangibles	Borrow Costs
00000 0000	00	00	0000	0000

Borrow Costs for Size Declie Portfolios

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
Borrow Cost	S				

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
Borrow Cost	S				

Portfolio borrow cost (%/yr - 21 day rolling), 2006:07:31--2023:09:28

Introduction 00000	SMB 0000	Size and BM 00	Covariance Structure	Intangibles 0000	Borrow Costs
Borrow Cost	S				

References I

- Banz, Rolf W., 1981, The relationship between return and market value of common stocks, *Journal of Financial Economics* 9, 3–18.
- Chen, Nai-Fu, Richard Roll, and Stephen A. Ross, 1986, Economic forces and the stock market, *Journal of Business* 59, 383–403.
- Connor, Gregory, and Robert A. Korajczyk, 1988, Risk and return in an equilibrium APT: Application of a new test methodology, *Journal of Financial Economics* 21, 255–289.
- Daniel, Kent, Lira Mota, Simon Rottke, and Tano Santos, 2020, The cross section of risk and return, *The Review of Financial Studies* 33, 1927–1979.
- Eisfeldt, Andrea L, Edward T Kim, and Dimitris Papanikolaou, 2022, Intangible value, *Critical Finance Review* 11, 299–332.
- Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3–56.
- Fama, Eugene F., and Kenneth R. French, 1995, Size and book-to-market factors in earnings and returns, *Journal of Finance* 50, 131–156.
- Fama, Eugene F., and Kenneth R. French, 1996a, The CAPM is wanted, dead or alive, *Journal of Finance* 51, 1947–1958.
- Fama, Eugene F., and Kenneth R. French, 1996b, Multifactor explanations of asset pricing anomalies, *Journal of Finance* 51, 55–84.

References II

- Fama, Eugene F., and Kenneth R. French, 1998, Value versus growth: The international evidence, *Journal of Finance* 53, 1975–1999.
- Fama, Eugene F, and Kenneth R French, 2004, The capital asset pricing model: theory and evidence, *Journal of Economic Perspectives* 18, 25–46.
- Fama, Eugene F., and Kenneth R. French, 2006a, Profitability, investment and average returns, *Journal of Financial Economics* 82, 491–518.
- Fama, Eugene F., and Kenneth R. French, 2006b, The value premium and the CAPM, *Journal of Finance* 61, 2163–2185.
- Fama, Eugene F., and Kenneth R. French, 2008, Dissecting anomalies, Journal of Finance 63, 1653–1678.
- Fama, Eugene F, and Kenneth R French, 2012, Size, value, and momentum in international stock returns, *Journal of Financial Economics* 105.
- Fama, Eugene F., and Kenneth R. French, 2015, A five-factor asset pricing model, *Journal of Financial Economics* 116, 1–22.
- Fama, Eugene F, and Kenneth R French, 2016a, Dissecting anomalies with a five-factor model, *Review of Financial Studies* 29, 69–103.
- Fama, Eugene F, and Kenneth R French, 2016b, International tests of a five-factor asset pricing model, *Journal of Financial Economics,* forthcoming .

References III

- Fama, Eugene F., and Kenneth R. French, 2018, Choosing factors, *Journal of Financial Economics* 128, 234–252.
- Keim, Donald B., 1983, Size-related anomalies and stock return seasonality: Further evidence, *Journal of Financial Economics* 12, 13–32.
- Kozak, Serhiy, and Stefan Nagel, 2023, When do cross-sectional asset pricing factors span the stochastic discount factor?, National Bureau of Economic Research working paper #31275.
- Li, Wendy CY, and Bronwyn H Hall, 2020, Depreciation of business R&D capital, *Review of Income and Wealth* 66, 161–180.
- Park, Hyuna, 2022, An intangible-adjusted book-to-market ratio still predicts stock returns, *Critical Finance Review* 11, 265–297.
- Peters, Ryan H, and Lucian A Taylor, 2017, Intangible capital and the investment-q relation, *Journal of Financial Economics* 123, 251–272.