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Basic Problem

Since Markowitz (1952) we have known that, with perfect
knowledge of µ and Σ, the vector of weights of the MVE
portfolio of risky assets is given by:

wMVE = γ−1Σ−1µ

giving

µMVE = γ−1µ′Σ−1µ

σMVE = γ−1
√

µ′Σ−1µ

SR2
MVE = µ′Σ−1µ

RMVE,t = w′
MVE,tRt
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Basic Problem

wMVE = γ−1Σ−1µ

The obvious solution suggested by this math is a “plug-in”
portfolio:

1 Calculate the sample-average excess returns µ̂ and
sample-covariance matrix Σ̂ over some estimation period (e.g, 120
months)

2 Invest over next month in the portfolio

ŵMV E = γ−1Σ̂−1µ̂

This works really badly for a bunch of reasons:

µ̂ is unstable, and only a very noisy estimator of future returns.
Σ̂ is also noisy, and is likely to have a few very small eigenvalues.
The resuting portfolio generally line-up with a small eigenvalues
that had a high realized return over the sample period.

Since the 1950s, we’ve look for solutions to this problem, both
based on economic and statistical arguments.
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Factor-model based approaches

Inspired by Merton (1973) and Ross (1976), key approaches have
focused on factor models.

Timeline:
1 Chen, Roll, and Ross (1986) economic factors:

Evidence of that there were premia associanted with innovations
in macroeconomic variables, but the Sharpe ratios associated with
these portfolios were small.

2 Connor and Korajczyk (1988) statistical factors using PCA:

effective in explaining the covariance structure, but all but the
first PC—which looks like the market—did not carry much of a
premium.

3 Fama and French (1993) characteristic sorted portfolios:

“The 3-factor model does a good job in explaining the
cross-section of average returns.”
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Characteristic Portfolios

The Fama and French (1993) approach sorting on characteristics
to form characteristic portfolios (CPs) has become standard in
the empirical asset pricing literature.

That is, find a characteristic that is associated with expected
returns, e.g. book-to-market, and create a corresponding
characteristic portfolio by sorting on this characteristic.

The resulting characteristic portfolio goes long high- and short
low-characteristic stocks.
Portfolio construction doesn’t directly use any information about
the covariance structure.

Examples: SMB, HML, RMW, CMA; UMD; WML; LIQ; ISU;
QMJ, etc.

Fama and French (1993, 2015); Carhart (1997); Daniel and Moskowitz
(2016); Pástor and Stambaugh (2003); Daniel and Titman (2006);
Asness, Frazzini, and Pedersen (2013); Lustig, Roussanov, and
Verdelhan (2011)
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Fama-French CP construction

In particular, Fama and French (2015) form five zero-investment
portfolios: (1) the market; and portfolios based on:

(2) “size” (SMB), (2) book-to-market (HML), (3) investment
(CMA), and (5) profitability (RMW)

B/M / Investment / Profitability

Market
Cap.

Small

Big

Low Medium High

each component portfolios is (1) rebalanced annually, and (2) is
VW/buy-and-hold.

Thus, it should incur very low t-costs, and have no exposure to
ST-reversal (Jegadeesh, 1990; Lehmann, 1990)

The SR2 of the optimal combination of the 5 FF portfolios is 1.17
(1963-2017), vs. 0.19 for the mkt.
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Characteristic portfolios are inefficient

PCA ignores information about expected returns that comes
from characteristics

Characteristic sorts ignore information about the covariance
structure that come historical individual firm’s return
covariances.
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Can characteristic portfolios be improved?

These characteristic portfolios explain the full cross-section of
returns iff they span the mean variance efficient (MVE) portfolio

In Daniel, Mota, Rottke, and Santos (2020, DMRS), we show
that characteristics were likely to be correlated with unpriced
factor risk.

In this case, the set of characteristics portfolios will not span the
MVE portfolio.

DMRS propose a methodology to hedge unpriced risk . . .

The DMRS hedge portfolios are based on the FOC for portfolio
optimization (based on a characterstics model)
The hedge portfolio are characteristic-balanced and use forecasts
of the factor loadings based on historical asset covariances with
the proposed factor-portfolios.
The hedge portfolios are formed annually (in July), and are
value-weighted/buy-and-hold.

Thus, like the FF portfolios, they should have very low t-costs,
and no exposure to short-term reversal.
Hedging the unpriced risk in the FF portfolios raises SR2 from
1.17 to 2.13.
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MAXSER portfolio

MAXimum-Sharpe-ratio Estimated and sparse Regression
(MAXSER) of Ao, Yingying, and Zheng (2019).

Uses sample-average returns and covariance matrix over 60
months to estimate parameters create candidate MVE portfolio,
and evaluates the performance of the portfolio over next month.

It performs this exercise for the DJIA 30 stocks (or 100 S&P500
stocks), plus the FF3 portfolios.

optimization problem is:

w(rc) := argmin
w

1

T

T∑
t=1

(rC −w′rt) s.t. ∥w∥ ≤ λ

This resulting SR improves with the addition of individual
30/100 stocks.

This is a surprising result; past returns for individual stocks
aren’t (positively) correlated with their future returns
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Quant Portfolio Optimization Approaches

Standard quant portfolio construction approach determines
trades by soving:

max
w′

{
w′Xλ− γ

2
·w′Σw − τ ·tc(∆w)

}
subject to portfolio constraints.

where

X is a matrix of characteristics; λ are characteristic premia.
Σ is the risk model.
tc(·) is the transaction cost model that captures both
proportional costs and price impact.
portfolio contstraints can include leverage constraints, sector
constraints. etc.

The relation between X and future returns in (somewhat) stable;
but individual stock characteristics are unstable.

NB: some form of momentum and short-term-reversal are in X.
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Quant risk models

It is well known in industry that the use of a full-dimensional
(N×N) Σ̂ in optimization leads to unstable portfolio weights.

Quant optimization approaches deal with this in multiple ways:
1 The use of Black and Litterman (1991) like approaches to shrink

E[R] model estimates towards an equilibrium prior.
2 Dimensionality reduction methods for Σ̂ based on a factor model:

Σ̂ = BΩ̂B′ + ∆̂

3 includes priced and unpriced factors; B is based on both
characteristics and historical covariances.

Key suppliers of risk models are BARRA and Axioma.
It is crucial that the X’s in the return model are be in the risk
model.

4 Ω̂ estimated with historical data; different half-lives for ρ and σ2

estimation.
5 diagonal ∆̂ estimated with historical data.
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Industry Loading
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Industry Loading
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Industry Loadings
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Industry Return Volatility
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What this paper does

Like AYZ, 30 year period.

120 month rolling estimation of parameters; 240 month test
period

i.e., parameters change each month, based on realized individual
stock returns over the preceding 10 years, and the returns of the
FF3 portfolios.

Two sets of test assets:
1 DJIA 30 individual stocks, plus FF 3 factor portfolios
2 Randomly selected 100 individual stocks from S&P 500, plus FF

3 factor portfolios.
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What this paper does

Parameter estimates come from a constrained ML estimation of
the process:

rt = α+Bfet + ϵt

where the fet are the realized returns of the FF-3 factors and

Ω = E[fefe
′
] and Σ = E[ϵϵ′]

In the full model that accounts for missing factors

α = Aλmiss + a and Σ = AA′ +C

where A is N×p, λmiss is p×1, and C = σ2I is diagonal.
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Estimation Procedure

parameter estimates come from ML over the 120 month
estimation period.

θ̂ = argmax
θ̂

L(θ̃) s.t. ã′Σ̃−1ã ≤ δapt

where θ contains Ω,B,λ, diag(C),a,A,λmiss,

s.t. the constraint that the squared-Sharpe Ratio of the
non-factor-linked returns be less than δapt.

Estimation each month is iterative, with two steps:
1 First step estimation doesn’t impose the constraint.
2 Second step uses PCA on Σ̂ from step 1, to estimate the number

of missing factors p, and to estimate the additional factors.
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1 Reconcile the findings here with other findings from the
literature.

is any of the improvement in SR coming from estimation of α
using historical returns?
If so, why?

2 Is realized single-stock alpha over the preceding 10 years a good
estimator of future asset demand (Koijen and Yogo, 2019)
shocks?

Asset-demand effects are relatively short-lived (≪ 10 years)

3 An Ω based on the Fama and French (1993) can probably be
improved.

4 Would characteristics/instruments work better than past returns
as estimators for α?

5 Investigate transaction costs & performace decay (McLean and
Pontiff, 2016)
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