Discussion of:

Which Investors Matter for Equity Valuations and Expected Returns?

Ralph Koijen, Rob Richmond and Moto Yogo

Kent Daniel[†]

[†]Columbia Business School & NBER

2022 Five-Star Conference November 18, 2022

• Goal:

- Estimate a characteristic-based asset-demand system designed to explain variation in asset prices.
- Using disaggregated holdings data, estimate heterogeneity in trading impact
- Use this estimation to answer two key questions:
 - Has the rise of passive investing and the resulting reallocation of capital affected prices? Has it affected price informativeness?
 - 2 How has climate risk affected prices and holdings?
 - Are some asset holders more exposed to climate risk?

• Goal:

- Estimate a characteristic-based asset-demand system designed to explain variation in asset prices.
- Using disaggregated holdings data, estimate heterogeneity in trading impact
- Use this estimation to answer two key questions:
 - Has the rise of passive investing and the resulting reallocation of capital affected prices? Has it affected price informativeness?
 - 2 How has climate risk affected prices and holdings?
 - Are some asset holders more exposed to climate risk?

- Goal:
 - Estimate a characteristic-based asset-demand system designed to explain variation in asset prices.
 - Using disaggregated holdings data, estimate heterogeneity in trading impact
- Use this estimation to answer two key questions:
 - Has the rise of passive investing and the resulting reallocation of capital affected prices? Has it affected price informativeness?
 - 2 How has climate risk affected prices and holdings?
 - Are some asset holders more exposed to climate risk?

- Goal:
 - Estimate a characteristic-based asset-demand system designed to explain variation in asset prices.
 - Using disaggregated holdings data, estimate heterogeneity in trading impact
- Use this estimation to answer two key questions:
 - Has the rise of passive investing and the resulting reallocation of capital affected prices? Has it affected price informativeness?
 - 2 How has climate risk affected prices and holdings?
 - Are some asset holders more exposed to climate risk?

The Model

- Two Period model
- CARA-Normal setting.
- Risky Firms/Assets n = 1, ..., N; each is unit supply.
- Riskfree asset with perfectly elastic supply at $r_f = 0$
- Investors i = 1, ..., I, with initial wealth $A_{i,0}$, disagree about firm prospects
 - $\gamma_i = \left(\frac{1}{\tau_i A_{i,0}}\right)$ makes model "CRRA-like."

Investor Optimization

```
Number of units: 1

Book value/unit: B

Price/unit: P

time 0

D Dividend
```

- There are N assets, each with 1 share and book-value B
- Investor i chooses an N-vector \mathbf{q}_i of shares.
- This leads to a final period wealth of:

$$A_{i,1} = A_{i,0} + (\mathbf{D} - \mathbf{P})'\mathbf{q}_i$$

Investor Optimization

• Alternatively, defining $\mathbf{Q}_i (= \mathbf{q}_i \circ \mathbf{B})$ as the N-vector of units of book-value held by investor i:

$$A_{i,1} = A_{i,0} + (\mathbf{d} - \mathbf{MB})' \mathbf{Q_i}$$

where $\mathbf{d} = \mathbf{D}/\mathbf{B}$ is the ROE and $\mathbf{MB} (= \mathbf{P}/\mathbf{B})$ is the market-to-book ratio.

• Agent i then chooses \mathbf{Q}_i so as to maximize their expected utility, that is:

$$\max_{\mathbf{Q}_i} \mathbb{E}_i \left[-\exp(-\gamma_i A_{i,1}) \right]$$

Firms & Beliefs

• **d**—the vector of firm ROEs—is governed by a single-factor structure:

$$d = \mu_i + \rho_i F + \eta$$

where:

$$F \sim \mathcal{N}(0,1), \quad \boldsymbol{\eta} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \text{ and } \mathbb{E}[F, \boldsymbol{\eta}] = \mathbf{0}$$

• Agents disagree about μ_i and ρ_i ; their beliefs are linear functions of firm characteristics **X** (N×K).

$$\mu_i(n) = \Phi_i^{\mu} \mathbf{x}(n) + \phi_i^{\mu}(n)$$

$$\rho_i(n) = \Phi_i^{\rho} \mathbf{x}(n) + \phi_i^{\rho}(n)$$

- ullet where the $oldsymbol{\Phi}_i$ s are the same for each asset, but are specific to each investor.
- The $\phi_i^{\mu}(n)$ and $\phi_i^{\rho}(n)$ capture the components of investor i's demand not explained by characteristics.

Portfolio Choice

• In this CARA-normal setting, investor i's optimal holdings, given their beliefs, are:

$$\begin{aligned} \mathbf{Q}_{i}(n) &= \frac{1}{\gamma_{i}\sigma^{2}} \left(\underbrace{\boldsymbol{\mu}_{i}(n) - c_{i}\boldsymbol{\rho}_{i}(n)}_{\text{RA Payoff}(n)} - \underbrace{\mathbf{MB}(n)}_{\text{Price}(n)} \right) \\ &= \frac{1}{\gamma_{i}\sigma^{2}} \left(\boldsymbol{\Phi}_{i}^{\mu}\mathbf{x}(n) + \boldsymbol{\phi}_{i}^{\mu}(n) - c_{i} \left(\boldsymbol{\Phi}_{i}^{\rho}\mathbf{x}(n) + \boldsymbol{\phi}_{i}^{\rho}(n) \right) - \mathbf{MB}(n) \right) \\ &= \frac{1}{\gamma_{i}\sigma^{2}} \left(\underbrace{\left(\boldsymbol{\Phi}_{i}^{\mu} - c_{i}\boldsymbol{\Phi}_{i}^{\rho}\right)}_{\boldsymbol{\beta}_{i}} \mathbf{x}(n) + \underbrace{\boldsymbol{\phi}_{i}^{\mu}(n) - c_{i}\boldsymbol{\phi}_{i}^{\rho}(n)}_{\boldsymbol{\epsilon}_{i}(n)} - \mathbf{MB}(n) \right) \end{aligned}$$

• That is, demand is linear in the the asset's observable characteristics $\mathbf{x}(n)$, with coefficient $\boldsymbol{\beta}_i$; "residual" demand is $\boldsymbol{\epsilon}_i(n)$.

Equilibrium

• Imposing market clearing ...

$$\mathbf{B} = \sum_{i=1}^{I} \mathbf{Q}_i$$

gives:

$$\mathbf{MB}(n) = \bar{\boldsymbol{\beta}}\mathbf{x}(n) + \bar{\boldsymbol{\epsilon}}(n)$$

where:

$$\overline{\boldsymbol{\beta}} = \sum_{i=1}^{I} a_i \boldsymbol{\beta}_i - \frac{\sigma^2 \boldsymbol{e}_1}{\sum_{i=1}^{I} \tau_i A_{i,0}},$$

$$\overline{\boldsymbol{\epsilon}}(n) = \sum_{i=1}^{I} a_i \boldsymbol{\epsilon}_i(n),$$

$$a_i = \frac{\tau_i A_{i,0}}{\sum_{i=1}^{I} \tau_i A_{i,0}}.$$

• a_i —the agent's relative influence on prices—is a function of the agent's risk-tolerance and wealth.

Assets and Agents

- Assets are the set of the largest US common stocks which, in aggregate, comprise 90% of the total US equity market capitalization.
- Agents, based on 13-F filings, are grouped into:
 - investment advisors, grouped by:
 - Large/Small
 - Active/Passive (using active-share (Cremers and Petajisto, 2009))
 - a hedge-funds
 - long-term investors
 - private banking
 - brokers
 - foreign
 - residual (assumed to be household sector)
- The usual caveats about 13-F filings apply—no coverage of small investors; no reporting of short positions.

Assets and Agents

- Assets are the set of the largest US common stocks which, in aggregate, comprise 90% of the total US equity market capitalization.
- Agents, based on 13-F filings, are grouped into:
 - investment advisors, grouped by:
 - Large/Small
 - Active/Passive (using active-share (Cremers and Petajisto, 2009))
 - a hedge-funds
 - long-term investors
 - private banking
 - brokers
 - foreign
 - residual (assumed to be household sector)
- The usual caveats about 13-F filings apply—no coverage of small investors; no reporting of short positions.

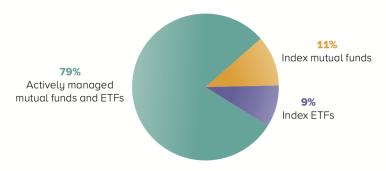
Asset Characteristics

- Asset characteristics:
 - Environmental Scores (Sustainalytics)
 - 2 Governance (Bebchuk et. al.)
 - Log book-equity
 - Foreign sales share
 - correlated with profitability
 - 6 Lerner measure
 - (Operating-Income Depreciation)/Sales
 - Sales/book
 - O Dividends/book.
 - Market beta
- These characteristics explain 65% (57%) of the x-s variance in M/B ratios . . .
 - and 45% (37%) of the x-s variance in 5-year profitability.
- More importantly, there is a striking level of heterogeneity across agents in the β s on these characteristics.

β heterogeneity

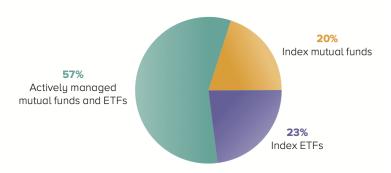
- There is fairly dramatic variation in the time-series average of the characteristic- β s across investor types
 - How much does allowing this variation improve the R^2 in explaining the cross section of MBs?
 - Does the time-series variation make sense?

Panel A: Investor type									
Investor characteristic	Environment	Governance	Log market- to-book	Log book equity	Foreign sales	Lerner	Sales to book	Dividends to book	Market beta
Hedge funds	-1.25 (-3.03)	0.96 (2.64)	0.48 (50.71)	55.42 (46.89)	-2.51 (-8.22)	0.21 (0.63)	1.87 (4.65)	-14.01 (-21.94)	1.17 (2.82)
Investment advisors:									
Large-passive	2.18	1.89	0.97	137.53	3.67	0.53	5.04	-0.11	1.45
	(11.03)	(10.89)	(232.35)	(260.12)	(26.85)	(3.53)	(28.01)	(-0.38)	(7.80)
Small-passive	3.07	1.09	0.84	116.14	3.09	3.76	1.76	-2.31	-3.41
	(16.48)	(6.66)	(216.88)	(238.53)	(24.54)	(27.30)	(10.61)	(-8.78)	(-19.97)
Small-active	-2.65	-2.68	0.52	64.03	2.76	7.68	-1.53	-8.48	-4.07
	(-11.76)	(-13.49)	(103.70)	(102.26)	(17.04)	(43.40)	(-7.16)	(-25.06)	(-18.51)
Large-active	0.65	3.79	0.95	125.32	3.63	0.07	2.02	-13.09	3.31
	(2.66)	(17.71)	(204.72)	(213.67)	(23.94)	(0.41)	(10.11)	(-41.29)	(16.08)
Long-term	1.05	-0.18	0.87	124.63	2.50	3.82	3.51	-2.08	-1.21
	(2.25)	(-0.44)	(83.07)	(94.53)	(7.35)	(10.23)	(7.82)	(-2.92)	(-2.61)
Private banking	-4.10	0.53	0.76	102.02	4.56	4.83	0.46	4.32	-8.61
	(-8.11)	(1.19)	(69.21)	(74.08)	(12.83)	(12.40)	(0.98)	(5.81)	(-17.83)
Brokers	4.22	-2.24	0.92	131.12	0.61	-1.12	3.51	-1.64	4.72
	(5.08)	(-3.06)	(52.01)	(58.90)	(1.07)	(-1.78)	(4.64)	(-1.36)	(6.05)
Adjusted R^2	0.08	0.08	0.48	0.59	0.05	0.15	0.07	0.16	0.14
Observations	6560	6560	7959	7959	7959	7959	7959	7959	7959


Repricing/AUM heterogeneity

- Do hedge funds move prices more because ...
 - ... they lever up their trades more?
 - 2 ... they trade less liquid assets?
 - 3 ... other investors "pile on" to the HF trades?
 - (some other reason)

Investor type	Wealth share (%)	Repricing	Repricing per dollar wealth
Investment advisors:			
Large-passive	17.7	15.9	0.90
Small-passive	16.4	17.2	1.05
Small-active	11.7	26.7	2.28
Large-active	11.1	18.4	1.65
Hedge funds	3.2	11.5	3.58
Long-term	3.9	3.9	1.01
Private banking	2.9	5.3	1.81
Brokers	1.1	1.8	1.56
Foreign	6.1	8.0	1.31


Active vs. Passive – 2011

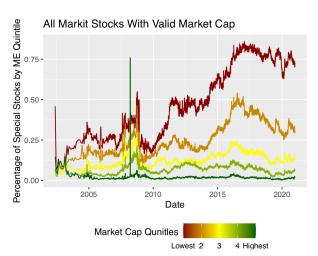
Percentage of total net assets, year-end

2011 total net assets: \$9.9 trillion

Active vs. Passive – 2021

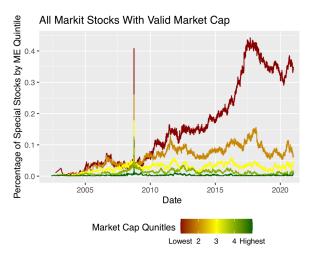
2021 total net assets: \$29.3 trillion

Active vs. Passive and Market Efficiency


- This paper finds that "... the capital reallocation from active to passive investors had a small impact on price informativeness"
- They find that "... capital did not flow from more to less informed investors on average."
- The price-informativeness analysis is based on the Bai, Philippon and Savov (2016) measure:

$$\frac{E_{t+3}(n)}{A_t(n)} = \alpha + \pi_i \log \left(\frac{\exp(\beta'_{1,i,t} x_t(n)) \epsilon_{i,t}(n)}{A_t(n)} \right) + \rho \left(\frac{E_t(n)}{A_t(n)} \right) + \nu_t(n)$$

- I like this analysis, and the findings seem right . . .
 - We know (?) that there a lot of money managers who don't add value.
- However, it would be nice to see more evidence consistent with this hypothesis.


Changing patterns in Short Interest

• D'Avolio (2002) finds that 1-2% of firms are "special", meaning that they have annualized borrow costs that exceed 1%.

Changing patterns in Short Interest

• This shows the fraction of shares, by size quintile, that have annualized borrow costs > 10%.

Intermediary Asset Pricing

- There is a really interesting evolving literature on intermediary asset pricing:
 - e.g., He and Krishnamurthy (2013), Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), Haddad and Muir (2018).
- The main idea behind this literature is that if intermediary cost of capital is stochastic, an estimate of that (stochastic) cost of capital can serve as a stochastic discount factor/pricing kernel.
 - e.g., intermediaries will invest less in any given asset, ceteris paribus, if that asset's returns negatively covary with the broker-dealer's leverage.
- The framework here seems ideally suited to provide a better estimation of these effects.

Conclusions

- The small set of characteristics used here do explain a lot of the cross-sectional variation in bm ratios and in future ROEs.
 - However, there is a considerable amount that remains unexplained.
- The relation between characteristics and holdings, and price impact is strikingly different across asset-holder types.
 - It would be nice dig deeper into the source of this variation.
- The results on informational efficiency make sense
 - Again, it would be nice to see both some robustness checks.
- The climate-risk results are intriguing.
 - Is this different than what we would expect to see?
 - All these are pass-through instruments; What is it about the investor base that leads to the differences in climate exposure?
 - Policy implications?

References I

- Adrian, Tobias, Erkko Etula, and Tyler Muir, 2014, Financial intermediaries and the cross-section of asset returns, *The Journal of Finance* 69, 2557–2596.
- Cremers, K.J. Martijn, and Antti Petajisto, 2009, How active is your fund manager? a new measure that predicts performance, Review of Financial Studies 22, 3329–3365.
- D'Avolio, Gene, 2002, The market for borrowing stock, Journal of Financial Economics 66, 271–306.
- Haddad, Valentin, and Tyler Muir, 2018, Do intermediaries matter for aggregate asset prices?, UCLA Anderson School of Management working paper.
- He, Zhiguo, Bryan Kelly, and Asaf Manela, 2017, Intermediary asset pricing: New evidence from many asset classes, *Journal of Financial Economics* 126, 1–35.
- He, Zhiguo, and Arvind Krishnamurthy, 2013, Intermediary asset pricing, American Economic Review 103, 732–70.