Discussion of: New and Old Sorts: Implications for Asset Pricing

Fahiz Baba Yara, Martijn Boons and Andrea Tamoni

Kent Daniel[†]

[†]Columbia Business School & NBER

2021 AFA Meetings 3 January 2021

- The authors examine characteristic-sorted portfolios ("factors") for the 56 chars from Freyberger, Neuhierl, and Weber (2017).
- BBT examine whether "new" factors—based on contemporaneous characteristics—can explain returns from "old" portfolios based on characteristics lagged up to 60 months.
- BBT's key finding is that:

- BBT find that, to explain the x-section of returns, you need to incorporate changes in characteristics.
 - suggesting that the characteristics models used so far are misspecified.
- I want to discuss a hypothesis as to what might be driving this interesting finding.

- The authors examine characteristic-sorted portfolios ("factors") for the 56 chars from Freyberger, Neuhierl, and Weber (2017).
- BBT examine whether "new" factors—based on contemporaneous characteristics—can explain returns from "old" portfolios based on characteristics lagged up to 60 months.
- BBT's key finding is that:

- BBT find that, to explain the x-section of returns, you need to incorporate changes in characteristics.
 - suggesting that the characteristics models used so far are misspecified.
- I want to discuss a hypothesis as to what might be driving this interesting finding.

- The authors examine characteristic-sorted portfolios ("factors") for the 56 chars from Freyberger, Neuhierl, and Weber (2017).
- BBT examine whether "new" factors—based on contemporaneous characteristics—can explain returns from "old" portfolios based on characteristics lagged up to 60 months.
- BBT's key finding is that:

- BBT find that, to explain the x-section of returns, you need to incorporate changes in characteristics.
 - suggesting that the characteristics models used so far are misspecified.
- I want to discuss a hypothesis as to what might be driving this interesting finding.

- The authors examine characteristic-sorted portfolios ("factors") for the 56 chars from Freyberger, Neuhierl, and Weber (2017).
- BBT examine whether "new" factors—based on contemporaneous characteristics—can explain returns from "old" portfolios based on characteristics lagged up to 60 months.
- BBT's key finding is that:

- BBT find that, to explain the x-section of returns, you need to incorporate changes in characteristics.
 - suggesting that the characteristics models used so far are misspecified.
- I want to discuss a hypothesis as to what might be driving this interesting finding.

Idiosyncratic Volatility

- There is a very nice paper, Rachwalski and Wen (2016), entitled "Idiosyncratic Risk Innovations and the Idiosyncratic Risk-Return Relation"
- RW examine the idiosyncratic volatility-future return relationship (Ang, Hodrick, Xing, and Zhang, 2006, 2009).
- The measures of the *level* of idiosyncratic volatility they use are the volatility of the residuals from an FF three-factor regression over different horizons:
 - IV_t^1 : over the past month (t-22 to t-5 trading days)
 - IV_t^6 : over the past 6 months (t-126 to t-5 days)
- They do spanning regressions, as is done here, but also do Fama and MacBeth (1973) regressions, which I'll concentrate on.

iVol(2)

- Consistent with Ang, Hodrick, Xing, and Zhang (2006), the FM regression of future R_{t+1} on IV_t^1 yields a coefficient of -0.157 (t = 3.49).
 - However, RW concentrate their analysis on IV_t^6 for which the FM coefficient is -0.121 (t =1.92)
 - IV_t^6 doesn't work as well because one-month IV's predictive power falls off very quickly; if you lag by IV_t^1 6-months there is no statistically-significant relation with future returns.
- While the forecast power for future returns falls off quickly, IV is highly autocorrelated:

The time-series average of the cross-sectional correlation between six-month IVR and the six-month IVR in three, five, and ten years after portfolio formation is 0.56, 0.50, and 0.44(p. 321)

Rachwalski and Wen (2016), Table 4:¹

\mathbf{FM}		\mathbf{X}_t	
Regr.	IV_t^6	IV_{t-6}^{6}	$IV_{t}^{6}\!-\!IV_{t\!-\!6}^{6}$
(1)	-0.121^{*} (0.063)		
(3)	-0.350^{***} (0.043)	$\begin{array}{c} 0.284^{***} \\ (0.042) \end{array}$	
(4)	-0.066 (0.068)		-0.284^{***} (0.042)
			-0.350^{***} (0.043)

¹ Regressions 1,3, and 4 are from Rachwalski and Wen (2016), Table 4. The "results" in regressions 2 and 5 are my guesses.

Rachwalski and Wen (2016), Table 4:¹

\mathbf{FM}		\mathbf{X}_t	
Regr.	IV_t^6	IV_{t-6}^6	$IV_{t}^{6}\!-\!IV_{t\!-\!6}^{6}$
(1)	-0.121^{*} (0.063)		
(2^{*})		~ 0	
(3)	-0.350^{***} (0.043)	$\begin{array}{c} 0.284^{***} \\ (0.042) \end{array}$	
(4)	-0.066 (0.068)		-0.284^{***} (0.042)
			-0.350^{***} (0.043)

¹ Regressions 1,3, and 4 are from Rachwalski and Wen (2016), Table 4. The "results" in regressions 2 and 5 are my guesses.

Rachwalski and Wen (2016), Table 4:¹

\mathbf{FM}		\mathbf{X}_t	
Regr.	IV_t^6	IV_{t-6}^6	$IV_{t}^{6}\!-\!IV_{t\!-\!6}^{6}$
(1)	-0.121^{*} (0.063)		
(2^{*})		~ 0	
(3)	-0.350^{***} (0.043)	$\begin{array}{c} 0.284^{***} \\ (0.042) \end{array}$	
(4)	-0.066 (0.068)		-0.284^{***} (0.042)
			-0.350^{***} (0.043)

¹ Regressions 1,3, and 4 are from Rachwalski and Wen (2016), Table 4. The "results" in regressions 2 and 5 are my guesses.

Rachwalski and Wen (2016), Table 4:¹

\mathbf{FM}		\mathbf{X}_t	
Regr.	IV_t^6	IV_{t-6}^6	$IV_t^6 - IV_{t\!-\!6}^6$
(1)	-0.121*		
	(0.063)		
(2^*)		~ 0	
(3)	-0.350^{***}	0.284***	
	(0.043)	(0.042)	
(4)	-0.066		-0.284^{***}
	(0.068)		(0.042)
(5^*)		~ 0	-0.350^{***}
			(0.043)

¹ Regressions 1,3, and 4 are from Rachwalski and Wen (2016), Table 4. The "results" in regressions 2 and 5 are my guesses.

	Book-to-market			Size			Р	Profitability			Investment		
	Panel A: Summary statistics												
	Firms	Ret.	t-stat	Firms	Ret.	t-stat	Firms	Ret.	t-stat	Firms	Ret.	t-stat	
$R_{X,(t),t+1}$	1155	0.53	1.86	2121	0.31	1.55	1085	0.43	3.28	1343	0.51	3.48	
$R_{X,(t-12),t+1}$	1029	0.61	3.12	1882	0.50	2.49	960	0.26	2.13	1193	0.22	1.80	
$R_{X,(t-24),t+1}$	917	0.50	2.85	1661	0.41	2.05	848	0.14	1.14	1054	0.09	0.75	
$R_{X,(t-36),t+1}$	821	0.49	2.84	1476	0.32	1.71	756	0.02	0.15	937	0.03	0.22	
$R_{X,(t-48),t+1}$	738	0.51	3.02	1316	0.37	2.06	677	0.02	0.13	837	0.00	0.03	
$R_{X,(t-60),t+1}$	664	0.38	2.25	1176	0.36	1.93	610	-0.01	-0.04	750	-0.06	-0.44	
				Panel B:	Relative	pricing	errors acros	s horizon	s				
	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^c	
$R_{X,(t-12),t+1}$	0.36	0.47	0.43	0.22	0.90	0.26	-0.08	0.78	-0.08	0.01	0.41	-0.01	
	(2.68)	(7.93)	(3.35)	(2.69)	(18.46)	(3.40)	(-1.29)	(15.80)	(-1.43)	(0.05)	(11.86)	(-0.14)	
$R_{X,(t-24),t+1}$	0.33	0.32	0.42	0.15	0.84	0.21	-0.13	0.63	-0.12	-0.05	0.28	-0.06	
	(2.28)	(6.49)	(3.03)	(1.46)	(16.93)	(2.16)	(-1.55)	(9.84)	(-1.51)	(-0.40)	(6.38)	(-0.51)	
$R_{X,(t-36),t+1}$	0.36	0.24	0.43	0.07	0.79	0.13	-0.23	0.58	-0.23	-0.10	0.24	-0.14	
	(2.35)	(4.78)	(2.95)	(0.77)	(18.37)	(1.44)	(-2.35)	(9.60)	(-2.59)	(-0.74)	(6.30)	(-1.10)	
$R_{X,(t-48),t+1}$	0.39	0.23	0.43	0.14	0.75	0.20	-0.22	0.55	-0.24	-0.18	0.37	-0.23	
	(2.56)	(4.79)	(2.97)	(1.43)	(17.78)	(2.13)	(-2.25)	(10.03)	(-2.66)	(-1.42)	(6.97)	(-1.76)	
$R_{X,(t-60),t+1}$	0.27	0.21	0.28	0.13	0.74	0.18	-0.23	0.52	-0.25	-0.24	0.35	-0.29	
	(1.75)	(4.62)	(1.93)	(1.20)	(14.21)	(1.75)	(-2.19)	(7.26)	(-2.60)	(-1.79)	(5.68)	(-2.22)	

	Book-to-market			Size			Р	Profitability			Investment		
	Panel A: Summary statistics												
	Firms	Ret.	$t ext{-stat}$	Firms	Ret.	$t ext{-stat}$	Firms	Ret.	t-stat	Firms	Ret.	t-stat	
$R_{X,({1 \atop t}),t+1}$	1155	0.53	1.86	2121	0.31	1.55	1085	0.43	3.28	1343	0.51	3.48	
$R_{X,(t-12),t+1}$	1029	0.61	3.12	1882	0.50	2.49	960	0.26	2.13	1193	0.22	1.80	
$R_{X,(t-24),t+1}$	917	0.50	2.85	1661	0.41	2.05	848	0.14	1.14	1054	0.09	0.75	
$R_{X,(t-36),t+1}$	821	0.49	2.84	1476	0.32	1.71	756	0.02	0.15	937	0.03	0.22	
$R_{X,(t-48),t+1}$	738	0.51	3.02	1316	0.37	2.06	677	0.02	0.13	837	0.00	0.03	
$R_{X,(t-60),t+1}$	664	0.38	2.25	1176	0.36	1.93	610	-0.01	-0.04	750	-0.06	-0.44	
				Panel B:	Relative	pricing	errors acros	s horizon	s				
	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^c	
$R_{X,(t-12),t+1}$	0.36	0.47	0.43	0.22	0.90	0.26	-0.08	0.78	-0.08	0.01	0.41	-0.01	
	(2.68)	(7.93)	(3.35)	(2.69)	(18.46)	(3.40)	(-1.29)	(15.80)	(-1.43)	(0.05)	(11.86)	(-0.14)	
$R_{X,(t-24),t+1}$	0.33	0.32	0.42	0.15	0.84	0.21	-0.13	0.63	-0.12	-0.05	0.28	-0.06	
	(2.28)	(6.49)	(3.03)	(1.46)	(16.93)	(2.16)	(-1.55)	(9.84)	(-1.51)	(-0.40)	(6.38)	(-0.51)	
$R_{X,(t-36),t+1}$	0.36	0.24	0.43	0.07	0.79	0.13	-0.23	0.58	-0.23	-0.10	0.24	-0.14	
	(2.35)	(4.78)	(2.95)	(0.77)	(18.37)	(1.44)	(-2.35)	(9.60)	(-2.59)	(-0.74)	(6.30)	(-1.10)	
$R_{X,(t-48),t+1}$	0.39	0.23	0.43	0.14	0.75	0.20	-0.22	0.55	-0.24	-0.18	0.37	-0.23	
	(2.56)	(4.79)	(2.97)	(1.43)	(17.78)	(2.13)	(-2.25)	(10.03)	(-2.66)	(-1.42)	(6.97)	(-1.76)	
$R_{X,(t-60),t+1}$	0.27	0.21	0.28	0.13	0.74	0.18	-0.23	0.52	-0.25	-0.24	0.35	-0.29	
	(1.75)	(4.62)	(1.93)	(1.20)	(14.21)	(1.75)	(-2.19)	(7.26)	(-2.60)	(-1.79)	(5.68)	(-2.22)	

	Book-to-market			Size			Р	Profitability			Investment		
	Panel A: Summary statistics												
	Firms	Ret.	t-stat	Firms	Ret.	$t ext{-stat}$	Firms	Ret.	t-stat	Firms	Ret.	$t ext{-stat}$	
$R_{X,(t),t+1}$	1155	0.53	1.86	2121	0.31	1.55	1085	0.43	3.28	1343	0.51	3.48	
$R_{X,(t-12),t+1}$	1029	0.61	3.12	1882	0.50	2.49	960	0.26	2.13	1193	0.22	1.80	
$R_{X,(t-24),t+1}$	917	0.50	2.85	1661	0.41	2.05	848	0.14	1.14	1054	0.09	0.75	
$R_{X,(t-36),t+1}$	821	0.49	2.84	1476	0.32	1.71	756	0.02	0.15	937	0.03	0.22	
$R_{X,(t-48),t+1}$	738	0.51	3.02	1316	0.37	2.06	677	0.02	0.13	837	0.00	0.03	
$R_{X,(t-60),t+1}$	664	0.38	2.25	1176	0.36	1.93	610	-0.01	-0.04	750	-0.06	-0.44	
	Panel B: Relative pricing errors across horizons												
	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^c	
$R_{X,(t-12),t+1}$	0.36	0.47	0.43	0.22	0.90	0.26	-0.08	0.78	-0.08	0.01	0.41	-0.01	
	(2.68)	(7.93)	(<u>3.35</u>)	(2.69)	(18.46)	(3.40)	(-1.29)	(15.80)	(-1.43)	(0.05)	(11.86)	(-0.14)	
$R_{X,(t-24),t+1}$	0.33	0.32	0.42	0.15	0.84	0.21	-0.13	0.63	-0.12	-0.05	0.28	-0.06	
	(2.28)	(6.49)	(3.03)	(1.46)	(16.93)	(2.16)	(-1.55)	(9.84)	(-1.51)	(-0.40)	(6.38)	(-0.51)	
$R_{X,(t-36),t+1}$	0.36	0.24	0.43	0.07	0.79	0.13	-0.23	0.58	-0.23	-0.10	0.24	-0.14	
	(2.35)	(4.78)	(2.95)	(0.77)	(18.37)	(1.44)	(-2.35)	(9.60)	(-2.59)	(-0.74)	(6.30)	(-1.10)	
$R_{X,(t-48),t+1}$	0.39	0.23	0.43	0.14	0.75	0.20	-0.22	0.55	-0.24	-0.18	0.37	-0.23	
	(2.56)	(4.79)	(2.97)	(1.43)	(17.78)	(2.13)	(-2.25)	(10.03)	(-2.66)	(-1.42)	(6.97)	(-1.76)	
$R_{X,(t-60),t+1}$	0.27	0.21	0.28	0.13	0.74	0.18	-0.23	0.52	-0.25	-0.24	0.35	-0.29	
	(1.75)	(4.62)	(1.93)	(1.20)	(14.21)	(1.75)	(-2.19)	(7.26)	(-2.60)	(-1.79)	(5.68)	(-2.22)	

	Book-to-market			Size			Р	Profitability			Investment		
	Panel A: Summary statistics												
	Firms	Ret.	t-stat	Firms	Ret.	$t ext{-stat}$	Firms	Ret.	$t ext{-stat}$	Firms	Ret.	$t ext{-stat}$	
$R_{X,(t),t+1}$	1155	0.53	1.86	2121	0.31	1.55	1085	0.43	3.28	1343	0.51	3.48	
$R_{X,(t-12),t+1}$	1029	0.61	3.12	1882	0.50	2.49	960	0.26	2.13	1193	0.22	1.80	
$R_{X,(t-24),t+1}$	917	0.50	2.85	1661	0.41	2.05	848	0.14	1.14	1054	0.09	0.75	
$R_{X,(t-36),t+1}$	821	0.49	2.84	1476	0.32	1.71	756	0.02	0.15	937	0.03	0.22	
$R_{X,(t-48),t+1}$	738	0.51	3.02	1316	0.37	2.06	677	0.02	0.13	837	0.00	0.03	
$R_{X,(t-60),t+1}$	664	0.38	2.25	1176	0.36	1.93	610	-0.01	-0.04	750	-0.06	-0.44	
				Panel B:	Relative	pricing	errors acros	s horizon	s				
	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^c	
$R_{X,(t-12),t+1}$	0.36	0.47	0.43	0.22	0.90	0.26	-0.08	0.78	-0.08	0.01	0.41	-0.01	
	(2.68)	(7.93)	(3.35)	(2.69)	(18.46)	(3.40)	(-1.29)	(15.80)	(-1.43)	(0.05)	(11.86)	(-0.14)	
$R_{X,(t-24),t+1}$	0.33	0.32	0.42	0.15	0.84	0.21	-0.13	0.63	-0.12	-0.05	0.28	-0.06	
	(2.28)	(6.49)	(3.03)	(1.46)	(16.93)	(2.16)	(-1.55)	(9.84)	(-1.51)	(-0.40)	(6.38)	(-0.51)	
$R_{X,(t-36),t+1}$	0.36	0.24	0.43	0.07	0.79	0.13	-0.23	0.58	-0.23	-0.10	0.24	-0.14	
	(2.35)	(4.78)	(2.95)	(0.77)	(18.37)	(1.44)	(-2.35)	(9.60)	(-2.59)	(-0.74)	(6.30)	(-1.10)	
$R_{X,(t-48),t+1}$	0.39	0.23	0.43	0.14	0.75	0.20	-0.22	0.55	-0.24	-0.18	0.37	-0.23	
	(2.56)	(4.79)	(2.97)	(1.43)	(17.78)	(2.13)	(-2.25)	(10.03)	(-2.66)	(-1.42)	(6.97)	(-1.76)	
$R_{X,(t-60),t+1}$	0.27	0.21	0.28	0.13	0.74	0.18	-0.23	0.52	-0.25	-0.24	0.35	-0.29	
	(1.75)	(4.62)	(1.93)	(1.20)	(14.21)	(1.75)	(-2.19)	(7.26)	(-2.60)	(-1.79)	(5.68)	(-2.22)	

	Book-to-market Firms Ret. t-stat 1155 0.53 1.86 1029 0.61 3.12 917 0.50 2.85 821 0.49 2.84		rket	Size			Р	Profitability			Investment		
	Panel A: Summary statistics												
	Firms	Ret.	$t ext{-stat}$	Firms	Ret.	$t ext{-stat}$	Firms	Ret.	t-stat	Firms	Ret.	t-stat	
$R_{X,(t),t+1}$	1155	0.53	1.86	2121	0.31	1.55	1085	0.43	3.28	1343	0.51	3.48	
$R_{X,(t-12),t+1}$	1029	0.61	3.12	1882	0.50	2.49	960	0.26	2.13	1193	0.22	1.80	
$R_{X,(t-24),t+1}$	917	0.50	2.85	1661	0.41	2.05	848	0.14	1.14	1054	0.09	0.75	
$R_{X,(t-36),t+1}$	821	0.49	2.84	1476	0.32	1.71	756	0.02	0.15	937	0.03	0.22	
$R_{X,(t-48),t+1}$	738	0.51	3.02	1316	0.37	2.06	677	0.02	0.13	837	0.00	0.03	
$R_{X,(t-60),t+1}$	664	0.38	2.25	1176	0.36	1.93	610	-0.01	-0.04	750	-0.06	-0.44	
	Panel B: Relative pricing errors across horizons												
	α^u	β^u	α^c	α^u	β^u	α^c	α^u	β^u	α^{c}	α^u	β^u	α^c	
$R_{X,(t-12),t+1}$	0.36	0.47	0.43	0.22	0.90	0.26	-0.08	0.78	-0.08	0.01	0.41	-0.01	
	(2.68)	(7.93)	(3.35)	(2.69)	(18.46)	(3.40)	(-1.29)	(15.80)	(-1.43)	(0.05)	(11.86)	(-0.14)	
$R_{X,(t-24),t+1}$	0.33	0.32	0.42	0.15	0.84	0.21	-0.13	0.63	-0.12	-0.05	0.28	-0.06	
	(2.28)	(6.49)	(3.03)	(1.46)	(16.93)	(2.16)	(-1.55)	(9.84)	(-1.51)	(-0.40)	(6.38)	(-0.51)	
$R_{X,(t-36),t+1}$	0.36	0.24	0.43	0.07	0.79	0.13	-0.23	0.58	-0.23	-0.10	0.24	-0.14	
	(2.35)	(4.78)	(2.95)	(0.77)	(18.37)	(1.44)	(-2.35)	(9.60)	(-2.59)	(-0.74)	(6.30)	(-1.10)	
$R_{X,(t-48),t+1}$	0.39	0.23	0.43	0.14	0.75	0.20	-0.22	0.55	-0.24	-0.18	0.37	-0.23	
	(2.56)	(4.79)	(2.97)	(1.43)	(17.78)	(2.13)	(-2.25)	(10.03)	(-2.66)	(-1.42)	(6.97)	(-1.76)	
$R_{X,(t-60),t+1}$	0.27	0.21	0.28	0.13	0.74	0.18	-0.23	0.52	-0.25	-0.24	0.35	-0.29	
	(1.75)	(4.62)	(1.93)	(1.20)	(14.21)	(1.75)	(-2.19)	(7.26)	(-2.60)	(-1.79)	(5.68)	(-2.22)	

Relation of this paper to DMRS/DT and HMM

- BBT note that they take a different approach than Daniel, Mota, Rottke, and Santos (2020), Daniel and Titman (1997) and Herskovic, Moreira, and Muir (2019): [These papers] argue that factors can be traded more profitably by combining a factor ... with an offsetting position in a hedge portfolio. We instead argue that combining the newest portfolio with an older portfolio improves investment opportunities. (p. 15)
- I would frame this differently:
 - DMRS shows that *if* a characteristic proxies for expected return, a portfolio with weights proportional to the characteristics will not be MVE, and hence won't price the cross-section.
 - I presume that combining these portfolios with hedge portfolios could also reduce their risk without affecting their expected returns.

Characteristic Math

- A *characteristic* is measurable quantity that proxies for expected returns.
- If a single vector of characteristics \mathbf{X}_t describes expected excess returns:

$$\boldsymbol{\mu}_t = \mathbb{E}_t \left[\mathbf{R}_{t+1} \right] = \mathbf{X}_t \lambda_c,$$

where the *characteristic premium* λ_c is a scalar.

• The beta w.r.t. the (conditional) MVE portfolio also describes expected returns:

$$\boldsymbol{\mu}_t = \boldsymbol{\beta}_t \lambda$$

where the *factor premium* λ is again a scalar

• Therefore:

$$\mathbf{X}_t = rac{\lambda_c}{\lambda} \cdot oldsymbol{eta}_t = rac{1}{\lambda_c} \cdot oldsymbol{\mu}_t$$

• Thus, the vectors of (1) characteristics, (2) MVE-portfolio loadings, and (3) expected returns are all the same (to a scalar).

Characteristic Math

- A *characteristic* is measurable quantity that proxies for expected returns.
- If a single vector of characteristics \mathbf{X}_t describes expected excess returns:

$$\boldsymbol{\mu}_t = \mathbb{E}_t \left[\mathbf{R}_{t+1} \right] = \mathbf{X}_t \lambda_c,$$

where the *characteristic premium* λ_c is a scalar.

• The beta w.r.t. the (conditional) MVE portfolio also describes expected returns:

$$\boldsymbol{\mu}_t = \boldsymbol{\beta}_t \lambda$$

where the *factor premium* λ is again a scalar

• Therefore:

$$\mathbf{X}_t = rac{\lambda_c}{\lambda} \cdot oldsymbol{eta}_t = rac{1}{\lambda_c} \cdot oldsymbol{\mu}_t$$

• Thus, the vectors of (1) characteristics, (2) MVE-portfolio loadings, and (3) expected returns are all the same (to a scalar).

The MVE Portfolio

• The key point in DMRS is that if $\mathbb{E}_t [\mathbf{R}_{t+1}] = \mathbf{X}_t \lambda_C$, then the weights of the MVE portfolio are:

$$\mathbf{w}_t^* = \gamma^{-1} \Sigma^{-1} \boldsymbol{\mu}_t = \frac{\lambda_c}{\gamma} \Sigma^{-1} \mathbf{X}_t$$

• It is easy to show that, the vector of asset betas w.r.t. this portfolio is:

$$\boldsymbol{\beta}_{t} = \frac{\sum \mathbf{w}_{t}^{*}}{\mathbf{w}_{t}^{*\top} \sum \mathbf{w}_{t}^{*}} = \frac{\mathbf{X}_{t} \lambda_{C}}{\mathbb{E}_{t} \left[\mathbf{R}_{t+1}^{*}\right]}$$

- However, a portfolios with weights $\mathbf{w}_t \propto \mathbf{X}_t$ will not be MVE.
 - That is, a portfolio that goes long high-characteristic stocks and short low-characteristic stocks will generally be inefficient.
 - it will contain both both priced and unpriced risk.
 - To make it efficient you have to hedge out the unpriced risk.

References

References I

- Ang, Andrew, Robert J. Hodrick, Yuhang Xing, and Xioayan Zhang, 2006, The cross-section of volatility and expected returns, *The Journal of Finance* 61, 259–299.
- , 2009, High idiosyncratic volatility and low returns: International and further US evidence, Journal of Financial Economics 91, 1–23.
- Daniel, Kent, Lira Mota, Simon Rottke, and Tano Santos, 2020, The cross section of risk and return, The Review of Financial Studies 33, 1927–1979.
- Daniel, Kent D., and Sheridan Titman, 1997, Evidence on the characteristics of cross-sectional variation in common stock returns, *Journal of Finance* 52, 1–33.
- Fama, Eugene F., and James MacBeth, 1973, Risk, return and equilibrium: Empirical tests, Journal of Political Economy 81, 607–636.
- Freyberger, Joachim, Andreas Neuhierl, and Michael Weber, 2017, Dissecting characteristics nonparametrically, National Bureau of Economic Research working paper.
- Herskovic, Bernard, Alan Moreira, and Tyler Muir, 2019, Hedging risk factors, Available at SSRN 3148693.
- Rachwalski, Mark, and Quan Wen, 2016, Idiosyncratic risk innovations and the idiosyncratic risk-return relation, *Review of Asset Pricing Studies* 6, 303–328.