Discussion of: Characteristics Are Covariances: A Unified Model of Risk and Return

Bryan Kelly, Seth Pruitt and Yinan Su

Kent Daniel[†]

[†]Columbia Business School & NBER

2018 Utah Winter Finance Conference February 8, 2018

Introduction

Main questions/ideas

- What explains the cross-section of equity returns?
 - factors or characteristics?
 - behavioral or rational?
- What are the factors that matter?
 - Methodology: IPCA
- Comparison with other traded factors.
 - CAPM, FF3&5, (Fama and French, 1993, 2015), Carhart (1997),
- ► Which characteristics matter?

History

Early CAPM tests

- Black, Jensen, and Scholes (1972), Fama and MacBeth (1973)

▶ Roll (1977) critique; Ross (1976)

► Testing the APT using PCA:

- Chamberlain and Rothschild (1983), Connor and Korajczyk (1986, 1988).
- From Chamberlain and Rothschild (1983):

[In an approximate APT setting] ... [t]he corresponding K eigenvectors converge and play the role of factor loadings. Hence only a principal component analysis is needed in empirical work.

- "testability" questions: Shanken (1982) and others

…using economically motivated factors:

- Chen, Roll, and Ross (1986) and others
- ...using long-short "factor-portfolios" based on predictive characteristics:
 - Fama and French (1993) and (numerous) others.

PCA Methodology

 (Static) PCA effectively minimizes the sum of squared residuals over the N assets and T periods in the sample:

$$\min_{\beta, \mathsf{F}} \sum_{t=1}^{\mathsf{T}} (\mathbf{r}_t - \beta \mathbf{f}_{t+1})' (\mathbf{r}_t - \beta \mathbf{f}_{t+1}) \quad \left(= \min \sum_{t=1}^{\mathsf{T}} \boldsymbol{\epsilon}_t' \boldsymbol{\epsilon}_t \right)$$

by choosing:

- 1. the (N \times K) matrix of time-invariant factor loadings β
- 2. the set of (T) K-vectors $\mathbf{F} = {\{\mathbf{f}_t\}}_{t=1}^T$.

Can be solved using an eigenvalue/vector decomposition of sample cov. matrix.

PCA Methodology

 (Static) PCA effectively minimizes the sum of squared residuals over the *N* assets and *T* periods in the sample:

$$\min_{\beta, \mathcal{F}} \sum_{t=1}^{\mathcal{T}} (\mathbf{r}_t - \beta \mathbf{f}_{t+1})' (\mathbf{r}_t - \beta \mathbf{f}_{t+1}) \quad \left(= \min \sum_{t=1}^{\mathcal{T}} \boldsymbol{\epsilon}_t' \boldsymbol{\epsilon}_t \right)$$

by choosing:

- 1. the (N \times K) matrix of time-invariant factor loadings β
- 2. the set of (T) K-vectors $\mathbf{F} = {\{\mathbf{f}_t\}}_{t=1}^T$.

Can be solved using an eigenvalue/vector decomposition of sample cov. matrix.

► However, there are problems with PCA:

- 1. it is "static." (i.e, β is time invariant)
- 2. it tends to be unstable
- 3. economic interpretation of the factors can be tricky.
 - Chen, Roll, and Ross (1986)
- 4. asset "repackaging" will change the principal components
 - ► Bray (1994)

PCA

Asset Repackaging

- ► For standard PCA, the weight applied to each squared residual $\epsilon_{i,t}^2$ is equal.
- ► This means that repackaging influences the estimated PC's.
- ► Example:
 - As of 5/2017, the Mkt Cap of AAPL was 5,000 times higher than the smallest firms in the Russell 3000.
 - Suppose you were to break Apple (the largest) into 5,000 "mini"-apples, and treat these as separate elements in the covariance matrix.
 - The first few principal components would then look a lot like AAPL

IPCA Methodology

► IPCA again minimizes the sum of squared residuals, over N & T:

$$\min_{\boldsymbol{\beta},\boldsymbol{F}} \sum_{t=1}^{T} (\mathbf{r}_t - \boldsymbol{\beta}_t \mathbf{f}_{t+1})' (\mathbf{r}_t - \boldsymbol{\beta}_t \mathbf{f}_{t+1})$$

- Now, time variation in the (N×K) matrix of factor loadings is captured with a (N×L) set of instruments Z_t.
- If $\beta_t = \Gamma_\beta \mathbf{Z}_t$, parameter estimation becomes finding the argmin of:

$$\min_{\Gamma_{\beta}, \mathcal{F}} \sum_{t=1}^{\prime} (\mathbf{r}_{t} - \Gamma_{\beta} \mathbf{Z}_{t} \mathbf{f}_{t+1})^{\prime} (\mathbf{r}_{t} - \Gamma_{\beta} \mathbf{Z}_{t} \mathbf{f}_{t+1})$$

- Γ_β is (L×K) and is the coefficients in the mapping from the L instruments to the K factor loadings.

IPCA

Choice of Instruments (from Table X)

size	2.18	**	a2me	0.13	e2p	0.03
$mom_{12}2$	1.71	**	s2p	0.12		0.03
mom_1_0	0.83	**	pcm	0.10	d2a	0.02
$mom_{12}7$	0.69		fc2y	0.08	dpi2a	0.02
beta	0.65	**	roe	0.08	q	0.02
rel_high	0.61	**	roa	0.08	free_cf	0.02
ol	0.49		sga2m	0.07	rna	0.01
at	0.44		suv	0.07	investment	0.01
cto	0.39		mom_36_13	0.06	prof	0.01
idio_vol	0.21		$_{\rm pm}$	0.05	lev	0.01
lturnover	0.16		beme	0.03	oa	0.01
$spread_mean$	0.14		ato	0.03	noa	0.01

• Here, L = 36 instruments are used:

IPCA

Managed Portfolio Interpretation

- In Section 2.1.1, KPS provide a very nice interpretation of IPCA in terms of managed characteristic portfolios.
- In essence, what IPCA is doing is a K-dimensional PCA of a set of L managed portfolios:

$$\mathbf{x}_{t+1} = \mathbf{Z}_t' \mathbf{r}_{t+1}$$

- Recall that K is the number of factors, and L is the number of instruments.

► Therefore:

If the first three characteristics are, say, size, value, and momentum, then the first three columns of **X** are time series of returns to portfolios managed on the basis of each of these. ...Likewise, the estimates of f_{t+1} would be the first K principal components of the managed portfolio panel. (p. 26)

IPCA

Does IPCA solve all of the problems in the asset pricing literature?

- Lewellen, Nagel, and Shanken (2010) and Daniel and Titman (1997, 2012) argue that characteristic-based factor-models will, mechanically, explain the returns of characteristics sorted portfolios.
 - However, they also argue that the appropriate set of test assets will allow rejection of the factor model.
- The claim here is that:

The asset pricing literature has struggled with the question of which test assets are most appropriate for evaluating models (Lewellen, Nagel, and Shanken, 2010; Daniel and Titman, 2012). IPCA provides a resolution to this dilemma.

- I'm going to argue that this statement is a little strong.

Asset Pricing Tests

test of $\Gamma_{\delta} = \mathbf{0}_{L imes M}$

- KPS test whether other proposed factors (g_{t+1}, incl., HML, SEM, etc.) help to explain returns
- ► The extended model is:

$$\mathbf{r}_t = \underbrace{\mathbf{\Gamma}_eta}_{oldsymbol{eta}_t} \mathbf{f}_{t+1} + \underbrace{\mathbf{\Gamma}_\delta \mathbf{Z}_t}_{oldsymbol{\delta}_t} \, \mathbf{g}_{t+1} + oldsymbol{\epsilon}_{t+1}$$

- And the test is a test of whether the restriction $\Gamma_{\delta} = \mathbf{0}_{L \times M}$ affects the fit of the model.
- It does not.
- I don't think this is xsurprising—it is equivalent to testing whether a characteristic managed portfolio based on B/M is explained by HML.

Asset Pricing Tests

test of characteristic model: $\mathbf{\Gamma}_{\alpha} = \mathbf{0}_{L imes 1}$

The extended model here is:

$$\mathbf{r}_t = \underbrace{\mathbf{\Gamma}_{lpha} \mathbf{Z}_t}_{oldsymbol{lpha}_t} + \underbrace{\mathbf{\Gamma}_{eta} \mathbf{Z}_t}_{oldsymbol{eta}_t} \mathbf{f}_{t+1} \ + \ oldsymbol{\epsilon}_{t+1}$$

- KPS test whether setting $\Gamma_{\alpha} = \mathbf{0}_{L \times 1}$ affects the fit of the model.
 - It does not.
 - In other words, after controlling for the PC loadings, the characteristics have no explanatory power.
- However, this doesn't mean that the factor model explains average returns better than the characteristic model.
- I would conjecture that the predictive R² is the same for both models Γ_α = 0_{L×1} and Γ_β = 0_{L×K}
- However, with a different set of test assets (i.e. \mathbf{Z}^{α} s), you could.

Factor Models

Characterics or Covariances

 As KPS note, absence of arbitrage implies the existence of a factor model that prices all assets/portfolios.

$$\mathbb{E}_{t}[\tilde{m}_{t+1}\tilde{r}_{\rho,t+1}] \iff \tilde{r}_{\rho,t+1} = \beta_{\rho,t}'\tilde{f}_{t+1} + \tilde{\epsilon}_{\rho,t+1}$$

- Trivially, it is also true that there exists a characteristic that prices all assets/portfolios.
- In DT(97), we make the point that the right charateristics model will "beat" a bad factor model
- perfect characteristics- and factor-models will both perfectly explain returns.
- Moreover, this will be true whether models are behavioral or rational.
 - See ? and Daniel, Hirshleifer, and Subrahmanyam (2001)
- However, with a "bad set" of test assets, a test may fail to reject a bad factor model.
 - That is, it will have low statistical power.
 - DT(1997,2012), and LNS(2010).

The Characteristics Model

Suppose that we iable to dentify a single characteristic c (N×1) that is a perfect proxy for expected excess returns

- Our logic goes through if there are multiple characteristics

► We can monotonically transform the characteristics so that:

 $c = \mu$

Further, we can form a *characteristic-managed portfolio* (like SMB, HML, or the characteristic managed portfolios here) with weights:

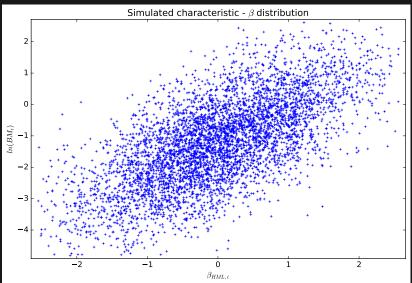
 $\mathbf{w}_{c} = \kappa \mathbf{c} = \kappa \boldsymbol{\mu}$

► However note that this portfolio will not in general be MVE, in that:

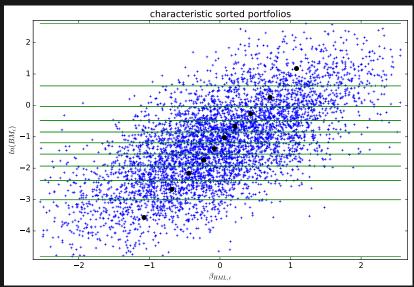
$$\mathbf{w}_{\mathrm{MVE}} = \kappa \mathbf{\Sigma}^{-1} \boldsymbol{\mu} \neq \kappa \boldsymbol{\mu}$$

- the characteristic managed portfolio will, however, explain the cross section of returns for certain sets of test assets.
 - This was the point of DT(1997,2012), and LNS(2010).

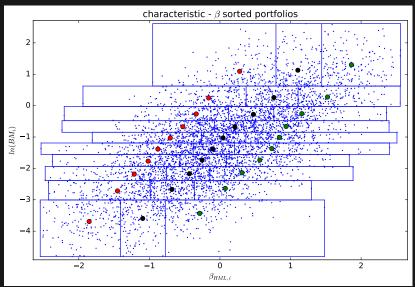
Model of asset distribution



characteristic sorted portfolios



characteristic & beta-sorted portfolios



instrument choice

The key empirical challenge here is selecting an ex-ante instrument that provides the best possible forecast of future factor-betas, controlling for characteristics.

 $\hat{\beta}_{i,HML} = \beta_{i,HML} + \epsilon_i$

In essence, to have a powerful test, you need instruments that are correlated with the (proposed) factor portfolio, but which are uncorrelated with the characteristic.

Choice of instruments

It is possible that the instruments used here are good proxies for the full cross-section of forecast returns

- i.e., $\boldsymbol{\mu}_t = \boldsymbol{\gamma}_{1 \times L} \mathbf{Z}_t$

- However, there are definitely other characteristics/instruments that explain the covariance structure, but not returns, that aren't included here.
- Unless these additional instruments are included in the estimation, the factor portfolios won't span the MVE portfolio and thus won't price the full cross section:
- Some linear combination of the managed portfolios has to have weights

$$\mathbf{w} = \kappa \boldsymbol{\Sigma}_t \boldsymbol{\mu}_t$$

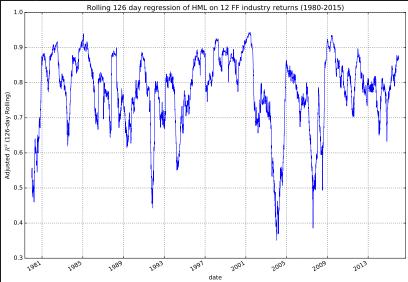
which won't happen without these additional instruments.

Choice of instruments

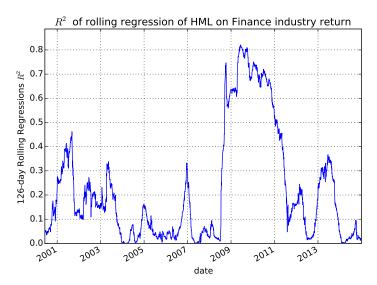
Other ideas

- See Fan, Furger, and Xiu (2016), who argue that, while the FF factors do explain expected returns, they don't explain the covariance matrix well.
 - They argue that industrys explain far more of the covariance structure.
- In Daniel, Mota, Rottke, and Santos (2017) form a set of test assets based on both characteristics and forecast forecast loadings.
 - With these portfolios, we reject the FF5 model at high levels of statistical significance.
 - After hedging out the unpriced risk in the FF5 portfolios, the squared-Sharpe ratio the of the MVE combination of factor portfolio doubles.

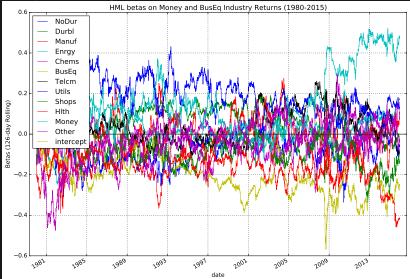
Industry Loading



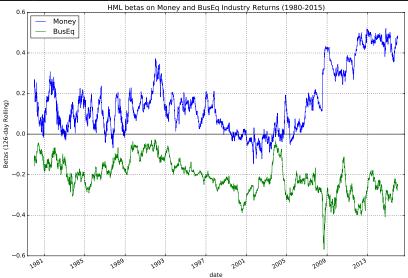
Industry Loading



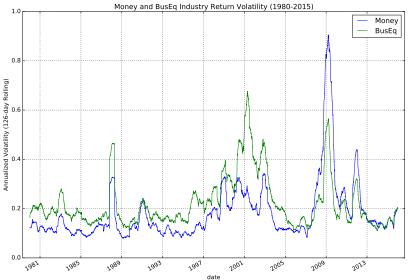
Industry Loadings



Industry Loadings



Industry Return Volatility



Conclusions

- The IPCA technique is interesting and potentiall alleviates some of the difficulties associated with standard PCA.
- ► However, choice of intstruments is import.
- ► The instruments need to include both good return forecasters, but also instruments which forecast the covariance structure.

References I

- Black, Fischer, Michael Jensen, and Myron Scholes, 1972, The capital asset pricing model: Some empirical tests, in Michael C. Jensen, ed.: *Studies in the Theory of Capital Markets*. pp. 79–121 (Praeger: New York).
- Bray, Margaret, 1994, The Arbitrage Pricing Theory is not Robust 1: Variance Matrices and Portfolio Theory in Pictures (LSE Financial Markets Group).
- Carhart, Mark M., 1997, On persistence in mutual fund performance, Journal of Finance 52, 57-82.
- Chamberlain, Gary, and Michael Rothschild, 1983, Arbitrage, factor structure, and mean-variance analysis on large asset markets, *Econometrica* 51, 1281–1304.
- Chen, Nai-Fu, Richard Roll, and Stephen A. Ross, 1986, Economic forces and the stock market, Journal of Business 59, 383–403.
- Connor, Gregory, and Robert A. Korajczyk, 1986, Performance measurement with the arbitrage pricing theory: A new framework for analysis, *Journal of Financial Economics* 17, 255–289.

——, 1988, Risk and return in an equilibrium APT: Application of a new test methodology, *Journal of Financial Economics* 21, 255–289.

- Daniel, Kent, Lira Mota, Simon Rottke, and Tano Santos, 2017, The cross section of risk and return, Columbia Business School working paper.
- Daniel, Kent D., David Hirshleifer, and Avanidhar Subrahmanyam, 2001, Overconfidence, arbitrage, and equilibrium asset pricing, *Journal of Finance* 56, 921–965.
- Daniel, Kent D., and Sheridan Titman, 1997, Evidence on the characteristics of cross-sectional variation in common stock returns, *Journal of Finance* 52, 1–33.

——, 2012, Testing factor-model explanations of market anomalies, *Critical Finance Review* 1, 103–139.

References II

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, *Journal of Financial Economics* 33, 3–56.

-------, 2015, A five-factor asset pricing model, Journal of Financial Economics 116, 1–22.

- Fama, Eugene F., and James MacBeth, 1973, Risk, return and equilibrium: Empirical tests, Journal of Political Economy 81, 607–636.
- Fan, Jianqing, Alex Furger, and Dacheng Xiu, 2016, Incorporating global industrial classification standard into portfolio allocation: A simple factor-based large covariance matrix estimator with high frequency data, *Journal of Business & Economic Statistics* 34, 489–503.
- Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2018, Interpreting factor models, *The Journal of Finance* 73, 1183–1223.
- Lewellen, Jonathan, Stefan Nagel, and Jay Shanken, 2010, A skeptical appraisal of asset pricing tests, *Journal of Financial Economics* 96, 175–194.
- Roll, Richard W., 1977, A critique of the asset pricing theory's tests, *Journal of Financial Economics* 4, 129–176.
- Ross, Stephen A., 1976, The arbitrage theory of capital asset pricing, *Journal of Economic Theory* 13, 341–360.

Shanken, Jay, 1982, The arbitrage pricing theory: Is it testable?, Journal of Finance 37, 1129–1140.