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Outline

Much of this discussion is stolen from either directly from other
discussions:

John Campbell’s discussion of Haddad, Kozak, and Santosh
(2018) at the 2018 NBER-SI
Lars Hansen’s discussion of this paper at the 2018 RedRock
conference.

. . . or from the insights of coauthors and colleagues.
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We have too many characteristics that forecast returns.
however, these characteristics are correlated, and not all of them
work out-of-sample.

challenge is dimensionality reduction
Cochrane (2011): “factor zoo” or “the multidimensional
challenge”.

What we are interested in is:
what characteristics (or combination of characteristics) forecast
E[r]’s?
how are these associated with the covariance structure?
or, equivalently, how can we map these characteristics into a
reasonable SDF?

Standard methods lead to overfitting (e.g., linear regression).

Idea here is to do:
1 bayesian approach with a new prior specification.
2 estimation using PCA.

Resulting portfolio, based on the first few PC’s, works well
out-of-sample
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Background—Factor Structures and PCA

Ross (1976): in a large economy, only exposures to common
factors can be priced.

If this were not true, an asymptotic arbitrage opportunity would
arise.
Vanishingly rare exceptions are allowed (average α2 → 0 as
N →∞).

In a finite economy, the corresponding empirical insight is that a
characteristic that predicts average return must also predict
comovement of stocks with that characteristic.

If this were not true, an investor could form a
characteristic-sorted portfolio, hedge out the factor risk, and earn
near-arbitrage profits (ie, SRp →∞)

How to find the common factors?

If there are K common factors then, asymptotically, the first K
principal components will span the space of the common factors
(Chamberlain and Rothschild, 1983)
Note that this doesn’t tell us anything about which of the K will
earn the highest SR.
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Several papers in the 1980s used statistical methods such as PC
analysis to extract common factors from the covariance matrix of
individiual firm stock returns.

Roll and Ross (1980), Connor and Korajczyk (1986, 1988),
Lehmann and Modest (1988)

The approach fell out of favor because the factors:
1 did not appear to be low-order, or stable
2 other that the first PC, they didn’t command a premium.

The first PC was always close to a scaled EW Mkt portfolio:
(q1 ≈ 1/

√
N)

⇒ q′k1 = 0 for k > 1 (i.e., other portfolios are zero-investment)

3 they were hard to interpret.
4 concerns about the effects of asset repackaging (Bray, 1994)

KNS are getting better results because they start with
characteristic-sorted long-short portfolios, not individual stocks.
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Structure

KNS start with N excess returns Rt

They then form H(= 50, 80or1, 375) $1 long-$1 short,
characteristic sorted portfolios.

Given the N×H matrix of scaled, demeaned characteristic ranks
Zt−1, the H×1 vector of returns on the “factor” portfolios is:

Ft = Zt−1Rt

Given an estimated (symmetric, positive definite) H×H
covariance matrix Σ (assumed constant):

Σ = QDQ′

where
D is an ordered diagonal matrix of eignevalues.
The H eigenvectors (the columns of Q) form an orthonormal basis
for the H-dimensional return space.

The “Principal component” portfolio returns Pt are given by:

Pt = Q′Ft
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The first PC is the portfolio with
weight vector q1 given by:

q1 = arg max
q

q′Σq s.t. q′q = 1

where q′1Σq1 = q′1QDQ′q1 = d1

The second PC (q2) solves the same
problem in the H−1 dimensional
manifold ⊥ q1

NB: – in the picture on the right,
qi → vi and di → λi
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Asset Repackaging

Suppose you have two LS portfolios: R1 = f1 and R2 = f2

Suppose f1 ⊥ f2 and σ1 > σ2

⇒ Q =

[
1 0
0 1

]
and D =

[
σ2
1 0

0 σ2
1

]
How can you change the ordering of the PC’s?

1 Add enough idiosyncratic noise to R2 enough so that its volatility
is > σ1.

This will decrease its SR, but make it the first PC.

2 Add assets: Suppose you in place of R2, you have N assets
2-(N+1) each of which has return

Ri = f2 + εi, where σ2
ε is small & εi ⊥ εj

the f2 eigenvector will have weights 1/
√
N on each of these N

assets, and corresponding eigenvalue Nσ2
2 .
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Cross-Sectional Risk and Priced Risk

The PC structure tells you about the structure of cross-sectional
risk in the stock market.

Economically, it makes sense that the biggest risk might be the
market.

However, at least for individual stocks, after that first PC there is
no reason to believe that the way that risks are packaged in the
stock market should be related to their SR (or equivalently, their
correlation with m̃).

Repackaging will alter the cross-section of risk in an arbitrary
way, without affecting m∗ (the MVE portfolio).

Further, there may very well be priced risks that can’t be hedged
(if m∗ 6= m)

The only thing that will determine whether the first few PCs
priced is the way the test assets are packaged.
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KNS consider priors of the form:

µ ∼ N
(

0,
κ2

τ
Dη

)
D1/2µ ∼ N

(
0,
κ2

τ
Dη−1

)

What η is most reasonable here?

Other shrinkage-estimators (Pástor, 2000; Pástor and
Stambaugh, 2000, e.g.,) use η = 1

As KNS point out, this is equivalent to assuming that the
distribution of SRs is independent of the risk of the portfolio.

KNS choose η = 2.

The logic is very cool, but I am not sure that I buy it!
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Prior Variances

D1/2µ ∼ N
(

0,
κ2

τ
Dη−1

)

KNS argue that:

E[b′b] =
κ2

τ

H∑
i=1

dη−2
i

they state that:

. . . with η < 2 the prior would imply that the i optimal portfolio
of a rational investor is likely to place huge bets on the lowest-
eigenvalue PCs. Setting η ≥ 2 avoids such unrealistic portfolio
weights. (p. 15)

Indeed, this seems to me a very good reason for why we should
expect higher SRs for portfolios that require extreme weights.

Seeing an a very high SR for a portfolio that requires very high
leverage seems consistent with what we know about market
frictions and limits to arbitrage
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Prior Means = 0?

D1/2µ ∼ N
(

0,
κ2

τ
Dη−1

)

Longer term, it would be nice to move away from centering the
prior distribution at zero.

We have some reasonable—rational and behavioral—theories,
about which characteristics should be linked to E[R]’s, and the
direction of this link:

The PV relationship in Fama and French (2015)
The short- and long-horizon relationships exploited in Daniel,
Hirshleifer, and Sun (2018).

Why not put a higher mean on those characteristics that show up
in such relationships?
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