Measuring Fund Performance Factors & Characteristics

Discussion of: Double Adjusted Mutual Fund Performance

by: Jeffrey Busse, Lei Jiang and Yuehua Tang

Kent Daniel[†]

[†]Columbia Business School & NBER

AFA Meetings 5 January, 2016

Measuring Fund Performance Factors & Characteristics

Mutual Fund Performance

- In assessing manager performance, we don't want to give MF managers credit for "dumb"/mechanical strategies we could have implemented ourselves at zero (or very low) cost:
 - For example, if the manager's outperformance can be entirely attributed to their buying small high-momentum value stocks, they shouldn't get credit for this.
- The FF-Carhart (1997) ("FFC") view of the world is similar:
 - There are priced risk-factors other than the market. If the managers achieved higher return by loading on these risks and earning the corresponding risk-premia, they shouldn't get credit for this.

Measuring Fund Performance Factors & Characteristics

Factors Versus Characteristics

- Given the absence of arbitrage (or LOP):
 - There exists a factor model that prices all assets perfectly.
 - Output: There exists a characteristics model that prices all assets perfectly.
- Thus, the rejection of a particular factor model (*e.g.*, the FFC model) doesn't imply that no correct factor model exists.
 - It just demonstrates that the mean variance efficient portfolio isn't spanned by the factors of the particular factor model considered.

Measuring Fund Performance Factors & Characteristics

Characteristics vs. Factor Models

 Given no-arbitrage (or LOP), and therefore the existence of an MVE portfolio:

$$\mathbb{E}[\tilde{R}_i] = \beta_{i,MVE} \cdot \mathbb{E}[\tilde{R}_{MVE}]$$

$$\mathbb{E}[\tilde{R}_i] = \underbrace{\beta_{i,MVE}}_{=\mathbf{b}'\theta_i} \mathbb{E}[\tilde{R}_{MVE}]$$

- As long as the MVE portfolio returns are in the span of a set of factor returns, that factor model will price every asset correctly.
- Similarly, if we define the vector of asset characteristics θ_i appropriately, that characteristic model will also price each asset correctly.

Measuring Fund Performance Factors & Characteristics

Measuring Fund Performance

- Thus, what we need to make sure of in assessing fund performance is that there are no dumb/mechanical strategies that generate positive or negative alpha.
 - This suggests a benchmark problem, *i.e.*, a misspecified factor or characteristics model.

Measuring Fund Performance Factors & Characteristics

Double Adjusted Fund Performance

- In DGTW, we proposed using the characteristic-adjusted returns based on the evidence that, *after controlling for characteristics*, loadings on the FFC four-factors don't help to explain the cross-section of returns.
 - Specifically, DT(97) rejects the FF-3 factor model, but not the characteristics model.
- This paper argues that a better benchmark adjustment is achieved by double-adjusting.
 - Perhaps both the FFC factor model and the DGTW characteristics model are wrong.
- There could also be other really good reasons for double-adjusting:
 - e.g., obtaining more precise estimates of firm's alphas.

Non-linearities Risk-optimization ndustries

Model Misspecifications

- I want to quickly explore what we know about the misspecification of the FFC and the DGTW factor model on three dimensions:
 - Non-linearities
 - pricing of "risk" after controlling for characteristics.
 - Industry Effects

Non-linearities Risk-optimization Industries

Size-Value Interactions (with FFC 4-factor alphas)

Kent Daniel – *Columbia* BJT – Double Adjusted Fund Performance

Non-linearities Risk-optimization Industries

Factor Model Null Hypothesis

Non-linearities Risk-optimization Industries

Characteristics Model Null Hypothesis

Non-linearities Risk-optimization Industries

Loadings vs. Characteristics

Non-linearities Risk-optimization Industries

Loadings vs. Characteristics

From Daniel, Mota, Rottke and Santos (2015):

Portfolio	ave	а	bMktRF	\mathbf{bSMB}	bHML	bRMW	bCMA	R2
LbMHb	-0.09	0.16	-0.41	-0.40	-0.01	0.16	0.08	0.65
	(-0.71)	(2.00)	(-20.45)	(-13.99)	(-0.15)	(3.9)	(1.29)	
LsMHs	-0.18	-0.09	-0.16	-0.54	0.08	0.24	0.19	0.72
	(-1.64)	(-1.53)	(-10.75)	(-25.3)	(2.76)	(7.55)	(4.14)	
LhMHh	-0.11	0.17	-0.02	0.02	-0.91	-0.23	0.46	0.74
	(-1.0)	(2.92)	(-1.35)	(1.04)	(-33.66)	(-7.98)	(10.77)	
LrMHr	-0.15	0.17	0.03	-0.08	-0.28	-0.76	-0.03	0.70
	(-1.65)	(3.18)	(2.47)	(-4.42)	(-11.19)	(-27.55)	(-0.68)	
LcMHc	-0.04	0.19	-0.03	-0.02	0.31	-0.10	-1.14	0.54
	(-0.44)	(2.97)	(-1.71)	(-0.76)	(10.19)	(-2.94)	(-23.52)	
EW-Comb.1	-0.10	0.18	0.00	-0.03	-0.29	-0.36	-0.23	0.78
(h,r,c)	(-1.55)	(5.58)	(-0.58)	(-2.4)	(-19.73)	(-22.44)	(-9.88)	
$\operatorname{EW-Comb.2}$	-0.10	0.17	-0.11	-0.12	-0.22	-0.23	-0.16	0.62
(b,h,r,c)	(-2.03)	(5.57)	(-13.83)	(-10.99)	(-15.17)	(-14.58)	(-6.7)	

Sample Period: 1963:07-2014:12

Non-linearities Risk-optimization Industries

Industry Adjusted Valuation Metrics

- There is a big literature that shows that controlling for industry, particularly w.r.t. valuation metrics such as BM, produces more efficient portfolios.
- In addition, while the FFC factors may not have large *unconditional* loadings on industry factors, they do have large *conditional* loadings.
 - Thus, a high β_{HML} , for example, may not be a good indicator that a fund is really buying value stocks, but rather just an indicator that a fund currently holds stocks in a high-volatility industry that currently has low price-to-book multiples.

Non-linearities Risk-optimization Industries

Industry Adjustment

Kent Daniel – Columbia BJT – Double Adjusted Fund Performance

Non-linearities Risk-optimizatior Industries

Industry Adjustment

Kent Daniel – Columbia BJT – Double Adjusted Fund Performance

Short-Term Persistence Analysis

- This paper claims that the double-adjustment, and in particular the adjustment for factor loadings, identifies a persistent component of alpha.
- The short-term persistence analysis in particular shows really dramatic levels of persistence.
 - Far higher that the persistence levels documented in DGTW (97), Kosowski, Timmermann, Wermers, and White (2006) or Fama and French (2010).
- I'm concerned that there is a bias in the (post-ranking) alphas that may be driving this apparent persistence.

Methodology Simulation Analysis

Short-Term Persistence Analysis

Table 4. Short-term Persistence Sorts

The table reports mean annualized post-ranking percentage four-factor alphas for funds sorted into deciles based on performance during a 24-month ranking period. The four-factor alpha in the post-ranking month is calculated as the difference between the realized fund return and the sum of the product of the factor betas estimated over the previous 24-month and the factor returns during the month. We compute *t*-statistics of the differences between the top and bottom deciles with Newey-West (1987) correction for time-series correlation with three lags. *, **, and *** indicate statistical significance at the ten, five, and one percent level respectively. The results reflect 392 individual monthly observations over a 1980m5-2012m12 sample period.

	Model								
-		Double-adjusted		Characteristics					
Decile	Four-factor	Regression	Portfolio	Regression	Portfolio	DGTW CS			
Bottom	-3.92	-3.58	-3.59	-0.93	-1.38	-1.54			
2	-2.17	-2.68	-2.49	-0.71	-1.22	-1.06			
3	-1.57	-1.64	-1.67	-0.85	-1.35	-1.09			
4	-1.36	-1.45	-1.13	-1.06	-0.99	-0.99			
5	-1.04	-1.05	-1.18	-0.80	-0.46	-0.71			
6	-0.71	-0.43	-0.60	-1.00	-1.12	-0.77			
7	-0.25	-0.19	-0.43	-0.95	-0.86	-0.82			
8	-0.05	-0.01	0.20	-1.48	-0.74	-0.78			
9	0.57	0.39	0.33	-0.39	-0.32	-0.38			
Тор	2.14	2.27	2.21	-0.16	0.13	0.28			
Top-bottom	6.06***	5.85***	5.80***	0.77	1.51**	1.82***			
t-statistic	(7.34)	(8.09)	(7.97)	(0.94)	(2.18)	(3.07)			

Methodology Simulation Analysis

Short-Term Persistence Analysis

• Fund performance is estimated over the 24-month "ranking" period leading up to the rank date *t* (from s = t-24, ..., t, e.g.,

$$\tilde{r}_{s} = \frac{\alpha}{k} + \sum_{k} \frac{\beta_{k}}{\delta_{s}} \tilde{f}_{s} + \epsilon_{s}$$

- Funds are then sorted into decile portfolios based on the estimated abnormal performance.
- Finally post-ranking abnormal performance is measured as:

$$\hat{\alpha}_{t+1} = \tilde{r}_{t+1} - \sum_{k} \hat{\beta}_{k} \tilde{f}_{t+1}$$

Methodology Simulation Analysis

Short-Term Persistence — Simulation

Methodology Simulation Analysis

Identifying alpha

- This is a really interesting approach/methodology.
- It might be useful to attempt to formalize the arguments a bit more, along the lines laid out here.
- Even if risks is not priced, controlling for them may decrease residual risk (and s.e.(\u00e0)), and make any true persistence easier to detect.
- Also, at this point, it would be useful to expand the factor and characteristics models to capture other characteristics that we now know forecast common equity returns.

References I

Methodology Simulation Analysis

Garhart, Mark M., 1997, On persistence in mutual fund performance, Journal of Finance 52, 57–82.

- Daniel, Kent D., Mark Grinblatt, Sheridan Titman, and Russ Wermers, 1997, Measuring mutual fund performance with characteristic-based benchmarks, *Journal of Finance* 52, 1035–1058.
- Fana, Eugene F, and Kenneth R French, 2010, Luck versus skill in the cross-section of mutual fund returns, The Journal of Finance 65, 1915–1947.
- Kospuski, Robert, Alan Timmermann, Russ Wermers, and Halbert White, 2006, Can mutual fund "stars" really pick stocks? new evidence from a bootstrap analysis, *The Journal of Finance* 61, 2551–2595.