Discussion of:

Disagreement, Tastes and Asset Prices

by Eugene Fama and Kenneth French

Kent Daniel

Kellogg-Northwestern & NBER

Fall 2004 NBER BF Meeting

October 16, 2004

The Standard EMH Model

- This standard EMH model posits that all investors perfectly process all cash flow-information available to them
 - e.g., Grossman (1976), Grossman and Stiglitz (1980)

The Standard EMH Model

- This standard EMH model posits that all investors perfectly process all cash flow-information available to them
 - e.g., Grossman (1976), Grossman and Stiglitz (1980)

The "Sophisticated" EMH Model

۲

Behavioral evidence (and casual observation) shows that many investors *don't* process their information perfectly:

The "Sophisticated" EMH Model

Behavioral evidence (and casual observation) shows that many investors *don't* process their information perfectly:

The standard response to this argument is that, if prices were wrong, competition between Arbitrageurs would force the prices back into line,

re-establishing the link between information and prices, and again allowing us to ignore Dentist (and Arb) behavior.

Can the Market be Perfectly Efficient?

- Here, Fama and French argue the Dentist behavior will affect prices and returns.
 - Dentists are either Uninformed, or have Tastes.
- Here, simple risk-aversion prevents the Arbitrageurs from eliminating the mispricing.

Model – Setup

۲

There are types of investors in the single period FF model:

- Type D "Uninformed", "Less Informed," or investors with "Tastes" for particular kinds of assets (really "Dentists")
 - D's "misinterpret current information or do not have all information."
- Type A "Informed" (really "Arbs")
 - A's have all knowable information, and process it perfectly to get the joint distribution of one-period asset payoffs.
 - A's are mean-variance optimizers, and therefore combine the riskfree asset and Tangency portfolio (T)
 - The fraction of all risky assets held by A's is x.

The Model – What Are Ds?

۲

FF's D's can either have tastes, be uninformed, or less informed.

The Model – What Are Ds?

- FF's D's can either have tastes, be uninformed, or less informed.
- In fact, they can't be just "uninformed" or "less informed," at least in the usual sense in economics.
 - D's having any or all information won't move prices away from rational values, if D's process their info rationally.

The Model – What Are Ds?

- FF's D's can either have tastes, be uninformed, or less informed.
- In fact, they can't be just "uninformed" or "less informed," at least in the usual sense in economics.
 - D's having any or all information won't move prices away from rational values, if D's process their info rationally.
- What are Tastes?

- Would the D's money flow to the A's if they saw and understood the investment opportunity set?
 - Are the "tastes" permanent?

Implications – Taste Structure

- The FF framework is very useful on some dimensions, but the framework obscures the intuition on some others.
- For example, in DHS (2001):

- Two types: overconfident and rational (risk-averse) Arbs.
- Uncertainty is described by a factor structure
- Overconfidence (mispricing) that is unrelated to the factor structure is eliminated by arbitrageurs.
 - Why? a mispriced portfolio with purely idiosyncratic risk would have arbitrarily large weight in T.
- Thus, if tastes are not correlated with loadings on systematic factors, arbitrageurs will eliminate them.

Key Result – Graphically

Implications – *Models*

Complete agreement is pretty much a necessary ingredient of testable asset pricing models – unless we are willing to specify the nature of the beliefs of the uninformed and exactly how they affect prices"

Implications – Magnitudes

Fama and French state:

۲

'How important are the price effects of disagreement and tastes for assets as consumption goods? We do not know."

Implications – *Magnitudes*

Fama and French state:

'How important are the price effects of disagreement and tastes for assets as consumption goods? We do not know."

In fact, the FF setup is very useful in providing a good, intuitive framework for thinking about magnitudes.

Magnitudes

- We can't observe D, but we can examine proxies for M and T, based on these anomalies:
 - Size
 - Book-to-Market
 - Earnings Momentum
 - Accruals
 - Issuance

Strategy Sharpe Ratios

This table shows the weights in the *ex-post* tangency portfolio (in %), and the *ex-post* monthly Sharpe-Ratio, and $\rho(r^*, r_M)$, 1968:07-2003:12.

Portfolio Weights (%)						Ex-Post	$ ho(r^*,r_M)$
MKT	SMB	HML	UMD	ISU	ACR	SR	(%)
100.00						0.091	100
75.07	24.93	_	_	_	_	0.093	97.8
28.19	14.63	57.18	_	_	_	0.232	39.1
21.13	10.16	41.92	26.79	_	_	0.342	26.5
18.82	15.33	13.87	9.55	42.44	_	0.448	20.3
17.35	14.47	12.32	8.18	36.65	11.04	0.461	19.7

ISU (ACR) are from Daniel and Titman (2004); they are effectively VW, rebalanced annually, and exclude P < \$5.

Arbitrageur Performance

- We don't see arbitrageurs with Sharpe Ratios like this.
- If there were any, we could identify them quickly.
 - For the full portfolio (and using the *ex-post* weights).

$$\frac{\hat{\alpha}_T}{\sigma_{\epsilon}} = 0.452$$

A fund holding portfolio *T* would have an expected *t*(*α*) of
 2 after:

$$\left(\frac{2}{0.452}\right)^2 = 20 \text{ months}$$

and an expected t = 4 after 78 months (6.5 years).

Arbitrageur Performance (2)

High Sharpe Ratios mean that:

۲

• Even for relatively small Arb wealth, x should be high.

• $x \sim W_A \cdot \mathrm{SR}_T / \gamma_A$

- Money should flow to well performing strategies (?)
- Yet, unless portfolio D has a really lousy performance, x can't be that big:

$$\alpha_D = -\left(\frac{x}{1-x}\right)\alpha_T$$

- \checkmark What are the frictions that prevent x from being bigger?
 - Can it be just risk aversion?

Other Hypotheses

۲

These SR's are unachievable because of transaction costs.

Other Hypotheses

- These SR's are unachievable because of transaction costs.
- Optimal strategy for arbitrageurs is to not hold the Tangency Portfolio
 - delegated management agency problems.

Other Hypotheses

- These SR's are unachievable because of transaction costs.
- Optimal strategy for arbitrageurs is to not hold the Tangency Portfolio
 - delegated management agency problems.
- There were (almost) no arbitrageurs?
 - Dynamics
 - Learning about price patterns?

References

- Grossman, Sanford J., 1976, On the efficiency of competitive stock markets where trades have diverse information, *Journal of Finance* 31, 573–585.
 - , and Joseph E. Stiglitz, 1980, On the impossibility of informationally efficient markets, American Economic Review 70, 393–408.