
Unpublished Appendices to “Market Reactions to Tangible and
Intangible Information.”

This document contains the unpublished appendices for Daniel and Titman (2006), “Mar-

ket Reactions to Tangible and Intangible Information.”

Appendix A presents a model that links our empirical results to specific behavioral

biases. Appendix C documents additional empirical analyses we carried out, mostly to

assess the robustness of the results in the paper. Specifically, Subsection C.1 presents

the results of analysis that relates measured changes in covariance risk and total return

standard deviation to tangible and intangible returns. Subsection C.2 looks at the deter-

minants firms future issuance activity. The analyses in Subsection C.3 examine whether

our results are different for small or large firms. Finally, the analyses documented in

Subsection C.4 examine the effects in January and outside of January.

A Market Reactions to Different Types of Information

This section develops a simple model that provides more explicit intuition for linking our

empirical results to specific behavioral biases. The model describes three sources of stock

price movements. These include accounting-based information about the firm’s current

profitability (tangible information); other information about the firm’s future growth op-

portunities (intangible information); and pure noise. To keep it simple, there are three

dates, 0, 1 and 2, a single risk-neutral investor, and a risk-free rate of zero.

Given these assumptions, price changes and returns would not be forecastable were

all investors rational. However, in our model investors misinterpret new information and

as a result make expectational errors. The model captures three kinds of errors:

1. Over- or Underreaction to Tangible Information: Investors may not correctly in-
corporate information contained in past accounting growth rates in forming their
estimates of the future cash flows that will accrue to shareholders. In our empir-
ical tests, we investigate whether investors over- or underreact to the information
in earnings, cash flow, sales, or growth rates. Given the linear specification of our
model Over- or Underreaction to past growth rates is equivalent to over- or under-
extrapolating these growth rates.

2. Over- or Underreaction to Intangible Information: Intangible information is news
about future cash flows which is not reflected in current accounting-based growth
numbers. Investors may over- or underreact to intangible information, perhaps
because they over- or underestimate the precision of this information.
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Table A.1: A Summary of the Model Variables

t = 0 t = 1 t = 2

Cash Flows (θt): − θ̃1 = θ̄ + ε̃1 θ̃2 = θ̄ + ρε̃1 + ε̃2
Intangible Signal: − s̃ (= ε̃2−ũ) −
Price “Noise”: − ẽ −
Bt B0 B0+θ̃1 (=B0+θ̄+ε̃1) B1 + θ̃2
ER
t [B̃2]) B0+2θ̄ B1+ρε̃1+s̃+ẽ B2

Mt (=EC
t [B̃2]) B0+2θ̄ B1+ρE ε̃1+(1+ω)s̃+ẽ B2

(B−M)t −2θ̄ −
(
θ̄+ρE ε̃1 + (1+ω)s̃+ ẽ

)
0

rBt−1,t − θ̃1 (= θ̄+ε̃1) θ̃2 (= θ̄+ρε̃1+ε̃2)
rt−1,t − (1+ρE)ε̃1 + (1+ω)s̃+ ẽ −

[
(ρE−ρ)ε̃1+ωs̃+ẽ

]
+ũ

Also:
• ε̃2 = s̃+ ũ, where ũ ⊥ {s̃, ε̃1}
• θ̄ ∼ N

(
θ0, σ

2(θ̄)
)

• ε̃1 ∼ N (0, σ2
1), ε̃2 ∼ N (0, σ2

2), s̃ ∼ N (0, σ2
s), ẽ ∼ N (0, σ2

e)

3. Pure Noise: Overreaction means that investors move prices too much in response
to information about future cash flows. Alternatively, we classify stock movements
as pure noise if they are uncorrelated with future cash flows. One interpretation of
this comes from microstructure theory: if investors overestimate the extent to which
their counterparts are informed, they will overreact to purely liquidity motivated
trades. Alternatively, noise trades can represent an extreme form of overconfidence,
in which investors believe that they have valuable signals about future cash flows,
but in reality their signals are unrelated to future cash flows.

An alternative interpretation of what we call over- and underreaction to information

and noise can arise in a model with rational risk averse investors who sometimes perceive

changes in risk or experience changes in risk preferences. For example, holding expected

cash flows constant, if an industrial sector becomes riskier, stock prices will initially decline

(because of the increased required rate of return) and will then be expected to increase

because of the increased risk premium. Moreover, changes in risk or risk preferences may

also change in response to either tangible or intangible information in ways that generate

return patterns that are indistinguishable from over or underreaction to these sources of

information.

1. The Model

The following provides the timing of the various information and cash flow realizations

along with a brief description of the structure of the model. A summary of the model
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variables are given in Table A.1.

Book Values and Cash Flows:

1. At date 0, the firm is endowed with assets with value B0, which we denote as the
initial book value of the firm’s assets. We assume that the assets do not physically
depreciate over time. At times 1 and 2, the firm’s cash flows are θ̃1 and θ̃2. Each
period, the book value grows by the amount of the cash flow.

2. At date 2 the firm is liquidated and all proceeds are paid to shareholders. Investors
are risk-neutral and the risk-free rate is zero, so the price equals the expected book
value at time 2.

Expectations of Future Cash Flows:

1. At t = 0 the expected cash flows at dates 1 and 2 are E0[θ̃1] = E0[θ̃2] = θ̄ respec-
tively.1

2. The unexpected cash flow at time 1 is ε̃1, so the total realized time 1 cash flow is
θ̃1 = θ̄1 + ε̃1.

3. At t = 1, the conditional expected value of the time 2 cash flow reflects both
accounting and non-accounting information. We assume a linear relation between
the time 1 and time 2 accounting growth. Specifically ER[θ̃2|θ̃1] = θ̄2 + ρε̃1, where
ρ is a measure of the accounting growth persistence.2 The R superscript denotes
Rational. Since investors are not necessarily rational in this setting, their perceived
expectations may not be rational.

4. The investor also observes non-accounting based information. We summarize this
information as the signal s̃ = ER[θ̃2|Ω1]−ER[θ̃2|θ̃1], where Ω1 denotes the set of all
information available to the investor at time 1. s̃ would represent the total effect of
non-accounting based information on the price, were investors rational. Note that
by definition s is orthogonal to accounting-based information – it can be thought of
as summarizing the residual from the projection of Ω1 onto θ1.

Market Price Reactions to Information: Since investors are risk neutral and fully

rational, conditional expected price changes equal zero, and the price at time 1 (P1) is

equal to ER[B2|Ω1]. However, as discussed earlier, in this model there are three possible

biases in the way investors set prices:

1. We model over and underreaction to tangible information by allowing investors to
believe that the persistence in cash flow growth is greater than it really is (i.e., they
think it is ρE when it is really ρ < ρE). Investors then set prices according to this
belief.

1This assumption makes (B−M)0 a perfect proxy for E0[rB0,1]. If this were not the case, the model
results would be qualitatively the same, but algebraically more complicated.

2In our empirical tests, the implicit specification will be different: there we assume a linear relation
between the log-book return and future returns.
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2. We model investor over and underreaction to intangible information by allowing the
price response to the time 1 intangible information to be (1+ω)s̃ rather than s. ω is
thus the fractional overreaction to intangible information; if investors are rational,
ω = 0. Consistent with DHS, ω > 0 could result from the investor overconfidence
about their ability to interpret vague information, and ω < 0 (underreaction to
intangible information) could result from underconfidence.

3. In the model the time 1 price deviates from the expected payoff by ẽ ∼ N (0, σ2
e),

where ẽ is pure noise (i.e., is orthogonal to θ2, ε̃1 and s̃). One can interpret this
“noise” term as an extreme form of overreaction where investors can receive a sig-
nal with zero precision, and act as though the signal is informative. However, as
mentioned earlier, other interpretations are possible.3

As a result of these three biases, the time 1 price is not the expected payoff (P1 6=
ER
t [B̃2]), so price changes (returns) are predictable using both past returns and tangible

information. In the next subsection we consider the return patterns these three biases

will generate, and ask how we can empirically separate these effects.

2. Regression Estimates

This subsection motivates the regressions we use to evaluate the importance of extrap-

olation bias, overreaction, and noise on stock returns. We consider both univariate and

multivariate regressions of future price changes on past price changes, book value changes

and book-to-market ratios. We carry out the related regressions in the empirical analyses

documented in the paper. The derivations of the mathematical results in this Section are

given in Appendix B.

Return Reversal:

Consider first a univariate regression of future price changes r1,2 (≡P2−P1) on past

price changes r0,1. This is equivalent to the long-horizon regression used by DeBondt and

Thaler (1985). Based on our model assumptions, this coefficient is:

β = −
(

(ρE − ρ)(1 + ρE)σ2
1 + ω(1 + ω)σ2

s + σ2
e

(1 + ρE)2σ2
1 + (1 + ω)2σ2

s + σ2
e

)
(1)

If investors are fully rational (ρE = ρ, ω = 0, and σ2
e = 0), β will be zero. However, a

negative coefficient will result when investors over-extrapolate earnings (ρE > ρ), overre-

act to intangible information (ω > 0), incorporate noise into the price (σ2
e > 0), or any

combination of these three.

3For example, prices can fall if investors receive liquidity shocks that force them to sell.

4



Isolating the Extrapolation Effect:

The extrapolation effect can be directly estimated with the following univariate re-

gression of r1,2 on the lagged book return (rB0,1≡B1 −B0).

r1,2 = α + βB rB0,1 + ε (2)

The estimated coefficient from this regression will equal,

βB = −(ρE − ρ)

(
σ2
1

σ2(θ̄) + σ2
1

)
. (3)

This will be negative if ρE > ρ (when the investor over-extrapolates past earnings growth)

and will be zero if investors properly assess tangible information (if ρE = ρ). Neither

overreaction to growth (ω) nor noise (σ2
e) affects βB, so βB isolates the extrapolation

effect.

Intuitively, this regression works because rB is a proxy for the time 1 unexpected cash

flow. However rB is a noisy proxy because it is the sum of the expected and unexpected

cash flows. We can better isolate the unexpected cash flows by controlling for the expected

component of rB. We can do this by including the lagged book-to-market ratio on the

RHS of this regression:

r1,2 = α + βBr
B
0,1 + βBM(B−M)0 + ε

By controlling for the lagged book-to-market ratio, we control for the component of the

book return that is expected and increase the absolute value of the coefficient of rB. The

coefficients from this multivariate regression are:

βB = −(ρE − ρ)

βBM = βB/2 (4)

Thus, the regression on past book return isolates the extrapolation effect. We can isolate

the overreaction and noise effects by using a multivariate regression of r1,2 on past return,

past book return and the lagged book-to-market ratio:

r1,2 = α + βBM(B −M)0 + βBr
B
0,1 + βRr0,1 + ε̃ (5)
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The coefficients in this regression are:

βR = −
(
σ2
e + ω(1 + ω)σ2

s

σ2
e + (1 + ω)2σ2

s

)
(6)

βB = −βR(1 + ρE)− (ρE − ρ) (7)

βBM = βB/2 (8)

The “intangible reversal” coefficient in this regression, βR, is indicative of the effect

of past returns on future returns, after controlling for the tangible information in the

book return (rB0,1). From equation (6), this will be negative when there is either noise

or overreaction to intangible information. However, because of the presence of the con-

trols, the magnitude of this coefficient is unaffected by under or overreaction to tangible

information. Equation (6) shows that:

1. If σ2
e � σ2

s , βR → −1.
This coefficient captures the intangible return reversal. If all of the return between
t = 0 and t = 1 that is not related to the book returns is due to pure noise, then
this return must completely reverse on average.

2. If σ2
e > 0, but ω = 0, the βR → −σ2

e/(σ
2
e + σ2

s) implying that −1 < βR < 0.
The past return will contain information about future growth, but will also contain
noise. This will mean that there will be incomplete reversal.

3. If σ2
e = 0, but ω>0, then βR = −ω/(1 + ω), again implying that −1 < βR < 0.

The intuition for this coefficient is straightforward: the time 1 price change is (1 +
ω)s̃, of which −ωs is reversed at time 2. This means that a fraction ω/(1+ω) of this
component of the price move is eventually reversed. Again with these parameters,
there is incomplete reversal.

Interestingly, results 2 and 3 indicate that it is impossible to distinguish between the

case of pure noise (σ2
e > 0, ω = 0) and overreaction (ω > 0, σ2

e = 0). This makes intuitive

sense: the econometrician cannot directly observe sg, but can only infer it through price

movements. What this means is that, based on the analysis here, we will be unable to

discriminate between overreaction and pure noise.4 As we will discuss later, it is only

possible to discriminate between these two alternatives by finding better proxies for the

information about future cash flows, and analyzing whether the changes in mispricing are

related to the arrival of this information.

It is important to note that, unlike in the univariate regression (2), the coefficient

βB in this multivariate regression will not necessarily be zero if there is no extrapolation

4Similarly, it is impossible to distinguish between overreaction and noise by looking at the relation
between past return and book return and future book return.

6



bias (if ρE = ρ), because it is a control for the tangible component of the past returns.

Similarly, the lagged book-to-market ratio (B−M)0 in this regression serves as a control

for the ex-ante forecastable component of the book return (the θ̄1 term in rB). Since, in

the models, (B−M)0 = −2θ̄, βBM = βB/2.

3. Direct Intangible Return Estimation

An alternative way to generate the results described in the last subsection is to first isolate

the intangible return by regressing r̃0,1 on rB0,1 and (B−M)0:

r0,1 = γ0 + γBM(B −M)0 + γBr
B
0,1 + ṽ

The residual from this regression, the component of the past return that is orthogonal to

the unexpected book return, is defined as the intangible return (though it captures both

the return associated with intangibles and the noise term):

r
(B)
I (0, 1) ≡ ṽ ≡

(
r1,2 − γ0 − γBM(B −M)0 − γBrB0,1

)
= (1 + ω)s̃+ ẽ (9)

The (B) superscript denotes that this return is orthogonalized with respect to the unex-

pected book return. Then, a modified version of the regression in equation (5) (the only

change being the substitution of rI0,1 for r0,1:)

r1,2 = α + β′BM(B −M)0 + β′Br
B
0,1 + β′Ir

(B)
I (0, 1) + ε̃

yields the regression coefficients:

β′I = −
(
σ2
e + ω(1 + ω)σ2

s

σ2
e + (1 + ω)2σ2

s

)
β′B = −(ρE − ρ)

β′BM = β′B/2

Notice that the coefficient β′I is identical to that in equation (6), and β′B and β′BM are

identical to those in equation (4). Thus, the coefficients in this regression tell us directly

about the magnitude of the noise/intangible effect (β′I) and the extrapolation effect (β′B).

One final item of note here: in this model, if there is only overreaction to intangible

information or noise, but no overreaction to tangible information, and if ρ ≈ 1, then

the two coefficients γBM and γB in the regression in equation (5) will be −βR/2, −βR,
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and βR, respectively. In this case, some straightforward algebra shows that the best

estimate of r1,2 is (a constant times)
(

(B −M)1 − (B−M)0
2

)
, in other words close to the

book-to-market ratio at time 1. What this illustrates is that, depending on some of the

persistence parameters, the current book-to-market ratio may end up being a good proxy

for the intangible information, and specifically a much better proxy than the past return

itself, which incorporates the effects of both tangible and intangible information.

B Derivation of Model Equations

Derivation of Equation (1):

The univariate regression coefficient in equation (1) is equal to:

β =
cov(r1,2, r0,1)

var(r0,1)
.

¿From the equations for r0,1 and r1,2 in Table A.1, and given that that ε1, s̃, ẽ, and ũ are

mutually uncorrelated, and that ε1 ∼ N (0, σ1), s ∼ N (0, σ2
s), e ∼ N (0, σ2

e) this is equal

to:

β =
cov(r1,2, r0,1)

var(r0,1)
=
−(ρE − ρ)(1 + ρE)σ2

1 − ω(1 + ω)σ2
s − σ2

e

(1 + ρE)2σ2
1 + (1 + ω)2σ2

s + σ2
e

Derivation of Equation (3):

From the equations for r1,2 and rB1,2 given in Table A.1, and given the assumption that ε̃1

and θ̄1 are uncorrelated, the regression coefficient is equal to:

βB =
cov(r1,2, r

B
0,1)

var(rB0,1)
=
−(ρE − ρ)σ2

1

σ2(θ̄) + σ2
1

= −(ρE − ρ)

(
σ2
1

σ2(θ̄) + σ2
1

)
.

Derivation of Equation (4):

Define: X =

[
rB0,1

(B−M)0

]
, then using the equations for rB0,1 and (B−M)0 in Table A.1,

we have that:

var(X) =

[
σ2(θ̄)+σ2

1 −2σ2(θ̄)

−2σ2(θ̄) 4σ2(θ̄)

]
and

var(X)−1 =
1

σ2
1

[
1 1/2

1/2
(
1 + σ2

1/σ
2(θ̄)

)
/4

]
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From the equations for rB0,1, r1,2 and (B−M)0 in Table A.1, we have that

cov(X, r1,2) =

[
−(ρE − ρ)σ2

1

0

]
,

giving the vector of regression coefficients as:[
βB

βBM

]
= var(X)−1 · cov(X, r1,2) =

[
−(ρE − ρ)

−(ρE − ρ)/2

]

Derivation of Equations (6)-(8):

First, note that cov(B−M0, r
B
0,1) = −2σ2(θ̄), and cov(B−M0, r0,1) = cov(B−M0, r1,2) =

0. Therefore, in this regression, as in the regression discussed immediately above, B−M0

will serve as a perfect control for the component of rB0,1 that is uncorrelated with r1,2 and

r0,1 (i.e., for θ̄).

This means that βBM = βB/2. It also means that the coefficients βIR and βB are

identical to what they would be in the regression:

r1,2 = α + βB
(
rB0,1 + (1/2)(B−M)0

)︸ ︷︷ ︸
=ε̃1

+βIRr0,1 + ε

Now, define:

X =

[
rB0,1 − (1/2)(B−M)0

r1,2

]
.

Then:

var(X) =

[
σ2
1 (1+ρE)σ2

1

(1+ρE)σ2
1 (1+ρE)2σ2

1+(1+ω)2σ2
s+σ2

e

]

cov(X, r1,2) =

[
−(ρE − ρ)σ2

1

−(1+ρE)(ρE − ρ)σ2
1 − (1+ω)ωσ2

s − σ2
e

]
The inverse of the covariance matrix is:

var(X)−1 =
1

σ2
1((1+ω)2σ2

s+σ2
e)

[
(1+ρE)2σ2

1+(1+ω)2σ2
s+σ2

e −(1+ρE)σ2
1

−(1+ρE)σ2
1 σ2

1

]
.
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giving the regression coefficients:[
βB

βIR

]
= var(X)−1·cov(X, r1,2)

=
1

(1+ω)2σ2
s+σ2

e

[
(1+ρE) (ω(1+ω)σ2

s+σ2
e)− (ρE − ρ)((1+ω)2σ2

s+σ2
e)

−ω(1+ω)σ2
s − σ2

e

]
,

or, simplifying,

βIR = −
(
σ2
e + ω(1 + ω)σ2

s

σ2
e + (1 + ω)2σ2

s

)
βB = −βIR(1+ρE)− (ρE − ρ).
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C Tables Documenting Additional Empirical Analy-

ses

This section documents the results of additional empirical analyses.

1. Analyses of the Effect of Tangible and Intangible Returns on

Asset Risk.

Table A.2 examines how the market betas of firms’ common stock change as a function of

past tangible and intangible returns, and Table A.3 examines how the volatility (return

standard deviation) of the returns change as a function of past tangible and intangible

returns.

2. The Determinants of Issuance

Table A.4 examines the relation between future changes in the composite issuance measure

and past issuance, and past tangible and intangible return measures.

3. Size Robustness Tests

The analyses documented here examine the relation between past tangible and intangible

returns and past issuance and future returns among small and large firms.

In Panels A and B of Table A.5, zero-investment intangible information and orthog-

onalized issuance portfolios that consist of small firms have mean returns that are sig-

nificantly different from zero. Consistent with the results for the full sample, the small

capitalization intangible portfolio returns cannot be explained by the CAPM, but can

be largely explained by the Fama and French (1993) three factor model. The issuance

returns cannot be explained by either of the models. Panels C and D show that the past

intangible return effect is not present in this period for the largest capitalization firms,

but the issuance portfolio remains robust even for the largest firms.

Finally, Table A.6 examines whether the return differences between small and large

quintile firms reported in Table A.5 are statistically different from zero. Regressions

1-3 show that the difference of slightly more than 0.3%/month between the small and

large intangible return portfolio is just statistically significant, while the difference of

−0.218%/month between the large and small quintile issuance portfolios is not, even
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after adjusting for market, size and book-to-market effects with the Fama and French

three-factor model.

4. Seasonality Analyses

This subsection presents the results of Fama MacBeth regressions of firm’s common stock

returns on past tangible and intangible returns for January months only (Table A.7), and

for non-January months only (Table A.8).
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Table A.2: Fama-MacBeth Regressions of Market Betas on Tangible and In-
tangible Return Measures

Annual, 1968-1999, Newey-West t-statistics in parentheses

This table reports the results the coefficients and t-statistics
from of a set of Fama and MacBeth (1973) regressions. The dependent variable in each cross-sectional
regression is β̂(t, t+ 2), the estimated slope coefficient from a regression of the excess return of the
individual stock’s excess return on the CRSP value-weighted portfolio excess return from July of year t
through June of year t+2. The independent variables in these regressions are the lagged estimated market
beta, β̂t−5, estimated using returns from July:(t−6) through June:(t−4); bmt, the book-to-market ratio
as of the end of December:(t−1); bmt−5, the book-to-market ratio as of the end of December:(t−6); and
rBV (t−5, t), rT (B)(t−5, t), rI(B)(t−5, t), the book-return, and the tangible and intangible returns using
book, calculated as described in the text. Measures using Sales, Cash Flow, and Earnings are calculated
similarly. We perform annual cross-sectional regressions from t = 1968 through 1999. Standard errors
are calculated using a Newey-West procedure with 11 lags.

Const β̂t−5 bmt bmt−5 rBV (t−5, t) rT (B)(t−5, t) rI(B)(t−5, t)

1 0.828 0.281 -0.081
(32.01) (11.92) (-2.62)

2 0.866 0.276 -0.071 -0.056
(22.03) (12.22) (-2.48) (-2.78)

3 0.907 0.266 -0.084 0.061
(22.23) (12.16) (-2.69) (1.90)

Const β̂t−5 spt spt−5 rSLS(t−5, t) rT (S)(t−5, t) rI(S)(t−5, t)

4 0.858 0.280 0.031
(32.37) (13.51) (1.31)

5 0.852 0.280 0.032 0.022
(17.55) (13.28) (1.28) (0.72)

6 0.824 0.263 0.092 -0.015
(26.00) (12.71) (3.20) (-0.63)

Const β̂t−5 cpt cpt−5 rCF (t−5, t) rT (C)(t−5, t) rI(C)(t−5, t)

7 0.593 0.298 -0.101
(28.05) (12.95) (-9.25)

8 0.680 0.290 -0.060 -0.018
(10.91) (13.52) (-2.68) (-0.81)

9 0.826 0.279 -0.042 0.102
(23.75) (11.81) (-1.40) (4.25)

Const β̂t−5 ept ept−5 rERN(t−5, t) rT (E)(t−5, t) rI(E)(t−5, t)

10 0.553 0.302 -0.102
(13.80) (13.10) (-3.83)

11 0.638 0.296 -0.065 -0.014
(18.04) (14.04) (-4.84) (-0.62)

12 0.819 0.281 -0.044 0.112
(24.04) (11.67) (-1.23) (3.83)

Const β̂t−5 r
(Tot)
T (t−5, t) rI(Tot)(t−5, t)

13 0.772 0.285 0.010 0.095
(31.24) (12.08) (0.40) (3.09)

14 1.112 0.018 0.110
(22.68) (0.92) (3.14)
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Table A.3: Fama-MacBeth Regressions of Return Standard Deviation on Tan-
gible and Intangible Return Measures

Annual, 1968-1999, Coefficients ×1000, Newey-West t-statistics in parentheses

This table reports the results the coefficients (×1000) and t-statistics from of a set of Fama and MacBeth
(1973) regressions. The dependent variable in each cross-sectional regression is σ̂(t, t+2), the estimated
standard deviation the excess return of the individual stock’s excess return from July of year t through
June of year t+2. The independent variables in these regressions are the lagged estimated excess return
standard-deviation, σ̂t−5, estimated using returns from July:(t−6) through June:(t−4); bmt, the book-
to-market ratio as of the end of December:(t− 1); bmt−5, the book-to-market ratio as of the end of
December:(t−6); and rBV (t−5, t), rT (B)(t−5, t), rI(B)(t−5, t), the book-return, and the tangible and
intangible returns using book, calculated as described in the text. Measures using Sales, Cash Flow, and
Earnings are calculated similarly. We perform annual cross-sectional regressions from t = 1968 through
1999. Standard errors are calculated using a Newey-West procedure with 11 lags.

Const σ̂t−5 bmt bmt−5 rBV (t−5, t) rT (B)(t−5, t) rI(B)(t−5, t)

1 13.461 121.819 -0.712
(46.69) (6.33) (-1.62)

2 14.218 116.513 -0.987 -1.271
(44.66) (6.22) (-1.74) (-5.41)

3 14.548 111.443 -1.527 0.402
(20.58) (5.34) (-2.23) (1.68)

Const σ̂t−5 spt spt−5 rSLS(t−5, t) rT (S)(t−5, t) rI(S)(t−5, t)

4 13.670 122.315 0.375
(33.51) (6.14) (1.53)

5 13.848 119.078 0.197 0.043
(31.39) (6.16) (0.58) (0.30)

6 13.628 112.555 0.303 -0.512
(28.24) (5.09) (1.05) (-2.28)

Const σ̂t−5 cpt cpt−5 rCF (t−5, t) rT (C)(t−5, t) rI(C)(t−5, t)

7 10.389 118.805 -1.304
(16.69) (5.80) (-7.67)

8 10.971 116.389 -1.178 -0.537
(13.21) (5.52) (-4.01) (-5.37)

9 13.897 109.685 -1.167 1.004
(66.30) (4.59) (-4.66) (6.30)

Const σ̂t−5 ept ept−5 rERN(t−5, t) rT (E)(t−5, t) rI(E)(t−5, t)

10 9.435 116.821 -1.454
(18.02) (5.60) (-12.04)

11 9.784 115.106 -1.435 -0.430
(11.07) (5.53) (-5.37) (-6.66)

12 13.901 108.374 -1.270 1.266
(66.52) (4.49) (-6.45) (5.73)

Const σ̂t−5 rT (Tot)(t−5, t) rI(Tot)(t−5, t)

13 13.031 112.655 -0.344 0.768
(115.96) (4.48) (-1.27) (4.32)

14 14.584 -0.268 0.927
(31.89) (-0.87) (4.14)
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Table A.4: Annual Fama-MacBeth Regressions of ι(t, t + 1) on Tangible and
Intangible Return Measures

1968-2001 Fama-MacBeth t-statistics in parentheses

This table presents the results of a set of Fama-MacBeth regressions of our composite-issuance measure

over the period 1968-2001. The dependent variable in each regression is the is the composite issuance

measure ι(t, t + 1). The independent variables are the fundamental-to-price ratios, measures of funda-

mental performance, the intangible return from t − 5 to t, and composite issuance from t − 5 to t. All

coefficient are ×100.

Const bmt bmt−5 rB(t− 5, t) rI(B) r(t− 5, t) ι(t−5, t)

-1.276 -1.904
(-5.64) (-12.74)
-0.281 -0.922 -1.159
(-0.80) (-7.23) (-6.76)
-1.073 0.781
(-3.58) (3.52)
-0.904 -1.843 -2.892 2.106
(-3.46) (-17.29) (-14.01) (8.28)
-0.281 -0.922 -1.159 2.106
(-0.80) (-7.23) (-6.76) (8.28)
-0.433 7.276
(-1.64) (18.94)
-0.261 -0.427 -0.756 1.613 6.591
(-0.81) (-3.58) (-4.45) (7.99) (21.61)
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Table A.5: Big and Small Quinitle Firms – Time-Series Regression Results

1968:07-2001:12, All Months, t-statistics in parentheses

The results here are the same as reported in the paper, except that two separate set of tests were done

for “big” and “small” firms (higher and lower than the 20th percentile of NYSE market capitalization).

Panel A: Small – Intangible Portfolio Return

α̂ β̂Mkt β̂SMB β̂HML R2(%)

1 -0.551
(-3.56)

2 -0.631 0.183 7.51
(-4.21) ( 5.70)

3 -0.199 -0.046 -0.020 -0.763 54.28
(-1.84) (-1.78) (-0.60) (-19.80)

Panel B: Small Firms –
Issuance Portfolio Return - Orthogonalized

α̂ β̂Mkt β̂SMB β̂HML R2(%)
4 -0.560

(-4.31)
5 -0.682 0.282 25.32

(-6.04) (11.64)
6 -0.644 0.196 0.309 -0.069 41.55

(-6.30) (8.03) (9.66) (-1.89)

Panel C: Big – Intangible Portfolio Return

α̂ β̂Mkt β̂SMB β̂HML R2(%)

7 -0.228
(-1.35)

8 -0.322 0.214 8.59
(-1.97) (6.13)

9 0.144 0.011 -0.226 -0.821 52.38
(1.19) (0.38) (-6.00) (-19.04)

Panel D: Big Firms –
Issuance Portfolio Return - Orthogonalized

α̂ β̂Mkt β̂SMB β̂HML R2(%)
10 -0.341

(-2.75)
11 -0.446 0.241 20.28

(-4.01) (10.09)
12 -0.410 0.213 0.039 -0.064 21.22

(-3.62) (7.87) (1.10) (-1.58)
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Table A.6: Small minus Big Difference Portfolio – Time-Series Regression Re-
sults

1968:07-2001:12, All Months, t-statistics in parentheses

The results here are based on those reported in Table A.5, except that here use the difference between the

returns on small-quintile and big-quintile Fama MacBeth coefficient portfolios. Thus, the series analyzed

in Panel A is the VW-intangible portfolio returns, for small firms only, minus the equivalent monthly

returns for big firms.

Panel A: Small minus Big – Intangible Port Rets

α̂ β̂Mkt β̂SMB β̂HML R2(%)

1 -0.323
(-2.05)

2 -0.309 -0.031 0.21
(-1.95) (-0.93)

3 -0.342 -0.057 0.206 0.058 4.36
(-2.16) (-1.50) ( 4.15) ( 1.02)

Panel B: Small minus Big –
Issuance Portfolio Return - Orthogonalized

α̂ β̂Mkt β̂SMB β̂HML R2(%)

4 -0.218
(-1.46)

5 -0.236 0.041 0.40
(-1.57) ( 1.27)

6 -0.234 -0.017 0.270 -0.005 8.74
(-1.59) (-0.48) ( 5.86) (-0.09)
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Table A.7: Fama-MacBeth Regressions of Returns on Fundamental-Price Ra-
tios, Lagged Returns and Lagged Growth Measures

1968:07-2001:12, January Only,
Coefficients ×100, t-statistics in parentheses

Const r(t−5, t) ι(t−5, t)

1 4.641 -1.784
(4.47) (-4.16)

2 4.214 0.886
(3.48) (1.21)

Const bmt rT (BV ) rI(BV ) ι(t−5, t)

3 4.314 1.628
(3.84) (3.61)

4 4.638 -0.867 -2.259
(4.02) (-2.60) (-4.09)

Const spt rT (SLS) rI(SLS) ι(t−5, t)

5 3.410 1.155
(3.18) (3.75)

6 4.586 -0.635 -2.156
(3.92) (-1.15) (-4.51)

Const cpt rT (CF ) rI(CF ) ι(t−5, t)

7 5.162 0.752
(3.35) (1.96)

8 4.496 -1.667 -1.950
(4.18) (-4.62) (-3.34)

Const ept rT (ERN) rI(ERN) ι(t−5, t)

9 5.117 0.641
(3.35) (1.86)

10 4.224 -1.422 -1.934
(3.87) (-3.92) (-3.34)

Const rT (Tot) rI(Tot)

11 3.697 -1.289 -2.619
(3.49) (-3.41) (-4.52)
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Table A.8: Fama-MacBeth Regressions of Returns on Fundamental-Price Ra-
tios, Lagged Returns and Lagged Growth Measures

1968:07-2001:12, February-December Only,
Coefficients ×100, t-statistics in parentheses

Const r(t−5, t) ι(t−5, t)

1 0.962 -0.073
( 3.66) (-1.03)

2 0.882 -0.778
( 3.17) (-5.14)

Const bmt rT (BV ) rI(BV ) ι(t−5, t)

3 0.955 0.155
(3.59) (1.96)

4 0.845 0.049 -0.142
(3.08) (0.60) (-1.54)

Const spt rT (SLS) rI(SLS) ι(t−5, t)

5 0.817 0.096
(2.96) (1.93)

6 0.709 0.211 -0.147
(2.66) (1.96) (-1.85)

Const cpt rT (CF ) rI(CF ) ι(t−5, t)

7 1.538 0.262
(6.21) (3.45)

8 0.876 0.090 -0.319
(3.28) (1.38) (-2.98)

Const ept rT (ERN) rI(ERN) ι(t−5, t)

9 1.553 0.224
(6.26) (3.10)

10 0.874 0.127 -0.298
(3.27) (1.87) (-2.75)

Const rT (Tot) rI(Tot)

11 1.045 -0.0175 -0.309
(4.07) (-0.26) (-2.73)
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